
z/OS
Version 2.Release 4

Cryptographic Services
Integrated Cryptographic Service Facility
Writing PKCS #11 Applications

IBM

SC14-7510-07

Note

Before using this information and the product it supports, read the information in “Notices” on page
105.

This edition applies to ICSF FMID HCR77D1 and Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases
and modifications until otherwise indicated in new editions.

Last updated: 2021-06-22
© Copyright International Business Machines Corporation 2007, 2021.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Tables... vii

About this document...ix
Who should read this document... ix
How this document is organized... ix
How to use this document.. ix
Where to find more information...x

IBM Crypto Education...x

How to send your comments to IBM...xi
If you have a technical problem..xi

Summary of changes...xiii
Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R4 (FMID HCR77D1)....................... xiii
Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R3 (FMID HCR77D0)....................... xiv
Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3 (FMID HCR77C1)....................... xiv
Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2 (FMID HCR77C0)........................ xv

Chapter 1. Overview of z/OS support for PKCS #11...1
Tokens.. 1

Secure key PKCS #11...2
The token data set (TKDS)..2
Controlling token access and key policy.. 2
Managing tokens ..7
Sample scenario for setting up z/OS PKCS #11 tokens.. 7
Sample scenario for controlling clear key processing .. 9

Auditing PKCS #11 functions.. 9
Component trace for PKCS #11 functions.. 10
Object types... 10

Session objects...10
Token objects... 10

Operating in compliance with FIPS 140-2..11
Requiring signature verification for ICSF module CSFINPV2... 13
Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications.. 14
Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications.................................... 15

Preparing to use PKCS #11 applications.. 16
Tasks for the system programmer... 16
Tasks for the security administrator.. 17
Tasks for the auditor...17
Tasks for application programmers... 17

Optional Crypto Express adapters...17

Chapter 2. The C API... 19
Using the C API.. 19

Deleting z/OS PKCS #11 tokens.. 19
Environment... 19
Cross memory considerations... 20

Key types and mechanisms supported... 20
Additional manifest constants for Dilithium quantum-safe algorithm support.......................................30

 iii

Objects and attributes supported... 31
Library, slot, and token information.. 50
Functions supported..51

Standard functions supported .. 51
Non-standard functions supported... 62
Non-standard mechanisms supported..63

Enterprise PKCS #11 coprocessors.. 64
Key algorithms/usages that are unsupported or disallowed by the Enterprise PKCS #11

coprocessors .. 64
PKCS #11 Coprocessor Access Control Points... 65
Standard compliance modes... 69

Function return codes..70
Troubleshooting PKCS #11 applications.. 71

Chapter 3. Sample PKCS #11 C programs .. 73
Running the pre-compiled version of testpkcs11...73

Steps for running the pre-compiled version of testpkcs11.. 73
Building sample PKCS #11 applications from source code... 74

Chapter 4. Regional cryptographic servers... 77
Regional cryptographic server key types and mechanisms supported..77

CKM_IBM_SM2.. 79
CKM_IBM_SM2_ENCRYPT...79
CKM_IBM_SM2_KEY_PAIR_GEN...80
CKM_IBM_SM2_SM3... 80
CKM_IBM_SM3.. 81
CKM_IBM_SM4_CBC..81
CKM_IBM_SM4_ECB..81
CKM_IBM_SM4_ECB_ENCRYPT_DATA... 82
CKM_IBM_SM4_ISO2_MAC.. 82
CKM_IBM_SM4_ISO2_MAC_GENERAL...83
CKM_IBM_SM4_KEY_GEN... 83
CKM_IBM_SM4_MAC...83
CKM_IBM_SM4_MAC_GENERAL... 84
CKM_XOR_BASE_AND_DATA.. 84

Additional manifest constants for regional cryptographic servers.. 84
API examples for regional cryptographic servers...84

Chapter 5. ICSF PKCS #11 callable services... 89

Appendix A. SMP/E installation data sets, directories, and files............................ 91

Appendix B. Source code for the testpkcs11 sample program................................93

Appendix C. Accessibility...101
Accessibility features.. 101
Consult assistive technologies.. 101
Keyboard navigation of the user interface.. 101
Dotted decimal syntax diagrams...101

Notices..105
Terms and conditions for product documentation... 106
IBM Online Privacy Statement.. 107
Policy for unsupported hardware..107
Minimum supported hardware..107
Trademarks.. 108

iv

Glossary.. 109

Index.. 125

 v

vi

Tables

1. Token access levels... 3

2. Resources in the CSFSERV class for token services...4

3. CLEARKEY.token-label resource access and key security policy...6

4. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)....................... 21

5. Mechanisms supported by specific cryptographic hardware.. 26

6. Restricted algorithms and uses when running in compliance with FIPS 140-2....................................... 29

7. Common footnotes for object attribute tables...31

8. Data object attributes that ICSF supports..31

9. X.509 certificate object attributes that ICSF supports.. 32

10. Secret key object attributes that ICSF supports.. 34

11. Public key object attributes that ICSF supports.. 39

12. RSA public key object attributes that ICSF supports...41

13. DSA public key object attributes that ICSF supports...42

14. Diffie-Hellman public key object attributes that ICSF supports..42

15. Elliptic Curve public key object attributes that ICSF supports.. 42

16. SM2 public key object attributes that ICSF supports.. 42

17. Private key object attributes that ICSF supports... 43

18. RSA private key object attributes that ICSF supports... 46

19. DSA private key object attributes that ICSF supports... 47

20. Diffie-Hellman private key object attributes that ICSF supports.. 47

21. Elliptic Curve private key object attributes that ICSF supports...47

22. SM2 private key object attributes that ICSF supports... 48

23. Domain parameter object attributes that ICSF supports.. 48

 vii

24. DSA domain parameter object attributes that ICSF supports...49

25. Diffie-Hellman domain parameter object attributes that ICSF supports..49

26. Dilithium public key object attributes that ICSF supports...49

27. Dilithium private key object attributes that ICSF supports... 50

28. Standard PKCS #11 functions that ICSF supports.. 51

29. List of algorithms/uses not supported/disallowed by Enterprise PKCS #11 coprocessors................... 64

30. PKCS #11 Access Control Points..65

31. Environment variables for capturing trace data...71

32. Regional cryptographic server mechanisms and functions...78

33. CKM_IBM_SM2: Key and data length...79

34. CKM_IBM_SM2_ENCRYPT: Key and input length..80

35. CKM_IBM_SM2_SM3: Key and input length.. 81

36. CKM_IBM_SM3: Data and digest length.. 81

37. CKM_IBM_SM4_CBC: Key and data length..81

38. CKM_IBM_SM4_ECB: Key and data length..82

39. CKM_IBM_ISO2_SM4_MAC: Key and data length.. 83

40. CKM_IBM_SM4_ISO2_MAC_GENERAL: Key and data length...83

41. CKM_IBM_SM4_MAC: Key and data length... 83

42. CKM_IBM_SM4_MAC_GENERAL: Key and data length... 84

viii

About this document

This document describes the support for PKCS #11 provided by the z/OS® Integrated Cryptographic
Service Facility (ICSF). ICSF is a component of z/OS Cryptographic Services, which includes the following
components:

• z/OS Integrated Cryptographic Service Facility (ICSF)
• z/OS System Secure Socket Level Programming (SSL)
• z/OS Public Key Infrastructure Services (PKI)

ICSF is a software element of z/OS that works with the hardware cryptographic feature and the Security
Server (RACF®) to provide secure, high-speed cryptographic services. ICSF provides the application
programming interfaces by which applications request the cryptographic services.

PKCS #11 is an industry-accepted standard that provides an application programming interface (API) to
devices, referred to as tokens, that hold cryptographic information and perform cryptographic functions.
PKCS #11 provides an alternative to IBM®'s Common Cryptographic Architecture (CCA).

Who should read this document
This document is primarily intended for application programmers who want to write PKCS #11
applications for z/OS. It also contains information for security administrators, system programmers, and
auditors in installations that use PKCS #11 applications.

How this document is organized
• Chapter 1, “Overview of z/OS support for PKCS #11,” on page 1 provides an overview of ICSF support

for PKCS #11. It discusses tokens, the token data set (TKDS), auditing and tracing PKCS #11 functions,
session objects, and tasks that must be performed before using PKCS #11 applications.

• Chapter 2, “The C API,” on page 19 discusses the PKCS #11 C API provided by ICSF, highlighting
differences between the z/OS implementation and the PKCS #11 standard.

• Chapter 3, “Sample PKCS #11 C programs ,” on page 73 discusses how to build and run the
testpkcs11 sample.

• Chapter 4, “Regional cryptographic servers,” on page 77 provides an introduction to the PKCS #11
extensions or mechanisms to be used with regional cryptographic servers.

• Chapter 5, “ICSF PKCS #11 callable services,” on page 89 provides a brief introduction to the PKCS
#11 callable services, which are documented in z/OS Cryptographic Services ICSF Application
Programmer's Guide.

How to use this document
Application programmers should read the entire book.

Security administrators should read the section “Tasks for the security administrator” on page 17 and
the information that it references.

System programmers should read the section “Tasks for the system programmer” on page 16 and the
information that it references.

Auditors should read the section “Tasks for the auditor” on page 17 and the information that is
references.

© Copyright IBM Corp. 2007, 2021 ix

Where to find more information
Before using this document, application programmers must be familiar with the PKCS #11 specification.
The PKCS #11 standard can be found at PKCS#11: Cryptographic Token Interface Standard
(www.cryptsoft.com/pkcs11doc). Application programmers should also be familiar with the ICSF library
and C programming.

Security administrators should be familiar with z/OS Security Server RACF Security Administrator's Guide.

Auditors should be familiar with z/OS Security Server RACF Auditor's Guide.

The callable services for PKCS #11 functions are documented in z/OS Cryptographic Services ICSF
Application Programmer's Guide.

The format of the token data set is documented in z/OS Cryptographic Services ICSF System Programmer's
Guide.

IBM Crypto Education
The IBM Crypto Education (community.ibm.com/community/user/ibmz-and-linuxone/groups/community-
home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c) community provides detailed
explanations and samples pertaining to IBM cryptographic technology.

x z/OS: z/OS ICSF Writing PKCS #11 Applications

http://www.cryptsoft.com/pkcs11doc
http://www.cryptsoft.com/pkcs11doc
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/community-home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c
https://community.ibm.com/community/user/ibmz-and-linuxone/groups/community-home?CommunityKey=6593e27b-caf6-4f6c-a8a8-10b62a02509c

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xi.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS ICSF Writing PKCS #11 Applications,

SC14-7510-07
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2007, 2021 xi

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xii z/OS: z/OS ICSF Writing PKCS #11 Applications

Summary of changes

ICSF is an element of z/OS, but provides independent ICSF releases as web deliverables. These web
deliverables are identified by their FMID. Each release of z/OS includes a particular ICSF FMID level as
part of its base.

ICSF publications can be obtained from:

• The Resource Link home page (www.ibm.com/servers/resourcelink). (Select Publications and then
select the release that you are interested in under ICSF Publications by FMID.)

• IBM z/OS downloads (www.ibm.com/systems/z/os/zos/downloads) for Cryptographic Support.

This document contains terminology, maintenance, and editorial changes to improve consistency and
retrievability. Technical changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Changes made in Cryptographic Support for z/OS V2R2 - z/OS
V2R4 (FMID HCR77D1)

This document contains information previously presented in z/OS ICSF Writing PKCS #11 Applications,
SC14-7510-06.

This document is for ICSF FMID HCR77D1. This release of ICSF runs on z/OS V2R2, z/OS V2R3, and z/OS
V2R4 and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

Prior to the June 2020 refresh

• Information about IBM z15.
• “Additional manifest constants for Dilithium quantum-safe algorithm support” on page 30

Changed

December 2020 refresh

• “PKCS #11 Coprocessor Access Control Points” on page 65 (APAR OA60317)

June 2020 refresh

• “Key types and mechanisms supported” on page 20 (APAR OA58880)

Prior to the June 2020 refresh

• “Key types and mechanisms supported” on page 20 (APAR OA58358)
• “Objects and attributes supported” on page 31 (APAR OA58358)
• “Standard functions supported ” on page 51 (APAR OA58358)
• “PKCS #11 Coprocessor Access Control Points” on page 65 (APAR OA58358)

Deleted

No content was removed from this information.

© Copyright IBM Corp. 2007, 2021 xiii

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/systems/z/os/zos/downloads

Changes made in Cryptographic Support for z/OS V2R2 - z/OS
V2R3 (FMID HCR77D0)

This document contains information previously presented in z/OS ICSF Writing PKCS #11 Applications,
SC14-7510-05.

This document is for ICSF FMID HCR77D0. This release of ICSF runs on z/OS V2R2 and z/OS V2R3 and
only on zSeries hardware.

The most recent updates are listed at the top of each section.

Changed

• “Requiring signature verification for ICSF module CSFINPV2” on page 13
• “Key types and mechanisms supported” on page 20
• “Objects and attributes supported” on page 31
• “PKCS #11 Coprocessor Access Control Points” on page 65
• “Standard compliance modes” on page 69

Deleted

No content was removed from this information.

Changes made in Cryptographic Support for z/OS V2R1 - z/OS
V2R3 (FMID HCR77C1)

This document contains information previously presented in z/OS ICSF Writing PKCS #11 Applications,
SC14-7510-04.

This document is for ICSF FMID HCR77C1. This release of ICSF runs on z/OS V2R1, V2R2, and V2R3 and
only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

• Information about IBM z14 and IBM z14 ZR1.

Changed

• “Objects and attributes supported” on page 31 (APAR OA54346).
• “Key types and mechanisms supported” on page 20.

Deleted

No content was removed from this information.

xiv z/OS: z/OS ICSF Writing PKCS #11 Applications

Changes made in Cryptographic Support for z/OS V2R1 - z/OS
V2R2 (FMID HCR77C0)

This document contains information previously presented in z/OS ICSF Writing PKCS #11 Applications,
SC14-7510-03.

This document is for ICSF FMID HCR77C0. This release of ICSF runs on z/OS z/OS V2R1 and z/OS V2R2
and only on zSeries hardware.

The most recent updates are listed at the top of each section.

New

• “Optional Crypto Express adapters” on page 17 is new.

Changed

• “Objects and attributes supported” on page 31 has been updated (APAR OA54346).
• “Regional cryptographic server key types and mechanisms supported” on page 77 has been updated.
• Table 4 on page 21
• Table 5 on page 26
• Table 6 on page 29
• Table 28 on page 51

Deleted

No content was removed from this information.

Summary of changes xv

xvi z/OS: z/OS ICSF Writing PKCS #11 Applications

Chapter 1. Overview of z/OS support for PKCS #11

PKCS #11, also known as Cryptoki, is the cryptographic token interface standard. It specifies an
application programming interface (API) to devices, referred to as tokens, that hold cryptographic
information and perform cryptographic functions. The PKCS #11 API is an industry-accepted standard
commonly used by cryptographic applications. ICSF supports PKCS #11, providing an alternative to IBM's
Common Cryptographic Architecture (CCA) and broadening the scope of cryptographic applications that
can make use of zSeries cryptography. PKCS #11 applications developed for other platforms can be
recompiled and run on z/OS.

The PKCS #11 standard can be found at PKCS#11: Cryptographic Token Interface Standard
(www.cryptsoft.com/pkcs11doc). This document describes how ICSF supports that standard. The
support includes the following:

• A token data set (TKDS) that serves as a repository for persistent cryptographic keys and certificates
used by PKCS #11 applications.

• Instore memory that serves as a repository for temporary (session-only) cryptographic keys and
certificates used by PKCS #11 applications.

• A C application programming interface (API) that supports a subset of the V2.20 level of the PKCS #11
specification

• PKCS #11 specific ICSF callable services. The C API uses these callable services.

Tokens
On most single-user systems, a token is a smart card or other plug-installed cryptographic device,
accessed through a card reader or slot. The PKCS #11 specification assigns numbers to slots, known as
slot IDs. An application identifies the token that it wants to access by specifying the appropriate slot ID.
On systems that have multiple slots, it is the application's responsibility to determine which slot to
access.

z/OS must support multiple users, each potentially needing a unique key store. In this multiuser
environment, the system does not give users direct access to the cryptographic cards installed as if they
were personal smart cards. Instead, z/OS PKCS #11 tokens are virtual, conceptually similar to RACF (SAF)
key rings. An application can have one or more z/OS PKCS #11 tokens, depending on its needs.

Typically, PKCS #11 tokens are created in a factory and initialized either before they are installed or upon
their first use. In contrast, z/OS PKCS #11 tokens can be created using system software such as RACF, the
gskkyman utility, or by applications using the C API. Each token has a unique token name, or label, that is
specified by the end user or application at the time that the token is created.

Rules: A token name must follow these rules:

• Up to 32 characters in length
• Permitted characters are:

– Alphanumeric
– National: @ (X'5B'), # (X'7B'), or $ (X'7C')
– Period: . (X'4B')

• The first character must be alphabetic or national
• Lowercase letters can be used, but are folded to uppercase
• The IBM1047 code page is assumed

In addition to any tokens your installation may create, ICSF will also create a token that will be available
to all applications. This "omnipresent" token is created by ICSF in order to enable PKCS #11 services
when no other token has been created. This token supports session objects only. Session objects are

© Copyright IBM Corp. 2007, 2021 1

http://www.cryptsoft.com/pkcs11doc
http://www.cryptsoft.com/pkcs11doc

objects that do not persist beyond the life of a PKCS #11 session. The omnipresent token is always
mapped to slot ID #0, and its token label is SYSTOK-SESSION-ONLY.

Tip: To reference the omnipresent token by label, use the constant SESS_ONLY_TOK, which is defined in
csnpdefs.h.

Because PKCS #11 tokens are typically physical hardware devices, the PKCS #11 specification provides
no mechanism to delete tokens. However, because z/OS PKCS #11 tokens are virtual, z/OS must provide
a way to delete them. For information on how to delete tokens using the C API, see “Deleting z/OS PKCS
#11 tokens” on page 19.

Secure key PKCS #11
z/OS PKCS #11 supports two different keying models, Secure versus Clear. A secure key is one where the
sensitive key material is always in wrapped form whenever it is outside the cryptographic device. The key
is wrapped by using a master key that has been established in the cryptographic device and is not
available in its entirety outside that device. A clear key does not have this extra protection. A clear key's
sensitive key material appears in the virtual storage of ICSF in-the-clear and might even appear outside
ICSF in-the-clear. Obviously, secure keys provide an extra layer of security. However, clear keys are more
versatile than secure keys as they are not bound to any particular cryptographic device. They can even be
used via software, when no cryptographic device is available.

The decision on whether to create a clear or secure key happens at the time the key is created. Absent
any direction from the applications themselves (through new vendor-defined attributes), ICSF uses the
context of the request along with a new RACF profile setting to decide. See “Controlling token access and
key policy” on page 2.

z/OS PKCS #11 tokens can contain clear keys, secure keys, or a mixture of both. Secure keys require a
secure coprocessor. Optional cryptographic hardware features can be configured as a cryptographic
accelerator, a secure CCA cryptographic coprocessor, or a secure PKCS #11 cryptographic coprocessor. A
secure PKCS #11 cryptographic coprocessor is also known as an Enterprise PKCS #11 coprocessor or
EP11. An Enterprise PKCS #11 coprocessor with an active master key must be available to generate and
use secure PKCS #11 keys. Clear keys do not require a coprocessor.

The token data set (TKDS)
The token data set (TKDS) is a VSAM data set that serves as the repository for persistent cryptographic
keys and certificates used by PKCS #11 applications. The system programmer creates the TKDS and
updates the ICSF installation options data set to identify the data set name of the TKDS.

A TKDS is not required in order to run PKCS #11 applications. If ICSF is started without a TKDS, however,
only the omnipresent token will be available.

A TKDS is required to utilize Secure Key PKCS #11.

Rules: The token data set must follow these rules:

• It must be a key-sequenced VSAM data set with spanned variable length records.
• It must be allocated on a permanently resident volume.

Clear keys in the token data set are not encrypted. Therefore, it is important that the security
administrator create a RACF profile to protect the token data set from unauthorized access.

For the format of the TKDS, see 'Creating the TKDS' in z/OS Cryptographic Services ICSF System
Programmer's Guide.

To optimize performance, ICSF utilizes in-storage copy of the TKDS.

Controlling token access and key policy
The PKCS #11 standard was designed for systems that grant access to token information based on a PIN.
The standard defines two types of users, the standard user (User) and the security officer (SO), each
having its own personal identification number (PIN). The SO can initialize a token (zero the contents) and

2 z/OS: z/OS ICSF Writing PKCS #11 Applications

set the User's PIN. The SO can also access the public objects on the token, but not the private ones. The
User has access to the private objects on a token and has the power to change his or her own PIN. The
User cannot reinitialize a token. The PIN that a user enters determines which role that user takes. A user
can fill both roles by having knowledge of both PINs.

z/OS does not use PINs. Instead, profiles in the SAF CRYPTOZ class control access to tokens. For each
token, there are two resources in the CRYPTOZ class for controlling access to tokens:

• The resource USER.token-name controls the access of the User role to the token.
• The resource SO.token-name controls the access of the SO role to the token.

A user's access level to each of these resources (read, update, or control) determines the user's access
level to the token.

There are six possible token access levels. Three are defined by the PKCS #11 standard, and three are
unique to z/OS. The PKCS #11 token access levels are:

• User R/O: Allows the user to read the token including its private objects, but the user cannot create new
token or session objects or alter existing ones.

• User R/W: Allows the user read/write access to the token object including its private objects.
• SO R/W: Allows the user to act as the security officer for the token and to read, create, and alter public

objects on the token.

The token access levels unique to z/OS are:

• Weak SO: A security officer that can modify the CA certificates contained in a token but not initialize the
token. (For example, a system administrator who determines the trust policy for all applications on the
system.)

• Strong SO: A security officer that can add, generate or remove private objects in a token. (For example, a
server administrator.)

• Weak User: A User that cannot change the trusted CAs contained in a token. (For example, to prevent an
end-user from changing the trust policy of his or her token.)

Table 1 on page 3 shows how a user's access level to a token is derived from the user's access level to
a resource in the SAF CRYPTOZ class.

Table 1. Token access levels

CRYPTOZ resource
READ (SAF access
level)

UPDATE (SAF access
level)

CONTROL (SAF access
level)

SO.token-label Weak SO

Can read, create, delete,
modify, and use public
objects

SO R/W

Same ability as Weak SO
plus can create and
delete tokens

Strong SO

Same ability as SO R/W
plus can read but not
use (see Note“2” on
page 4) private
objects; create, delete,
and modify private
objects

Chapter 1. Overview of z/OS support for PKCS #11 3

Table 1. Token access levels (continued)

CRYPTOZ resource
READ (SAF access
level)

UPDATE (SAF access
level)

CONTROL (SAF access
level)

USER.token-label User R/O

Can read and use (see
Note “2” on page 4)
public and private
objects

Weak User

Same ability as User R/O
plus can create, delete,
and modify private and
public objects. Cannot
add, delete, or modify
certificate authority
objects

User R/W

Same ability as Weak
User plus can add,
delete, and modify
certificate authority
objects

Note:

1. The USER.token-name and SO.token-name profiles will not be checked to determine access to the
omnipresent token SYSTOK-SESSION-ONLY. ICSF creates this token to provide PKCS #11 support
even if no other token is available to an application. All users will always by considered to have R/W
access to this token.

2. "Use" is defined as any of the following:

• Performing any cryptographic operation involving the key object; for example C_Encrypt
• Searching for key objects using sensitive search attributes
• Retrieving sensitive key object attributes.

The sensitive attribute for a secret key is CKA_VALUE. The sensitive attribute for Diffie Hellman, DSA,
and Elliptic Curve private key objects is CKA_VALUE. The sensitive attributes for RSA private key
objects are CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2, CKA_EXPONENT_1,
CKA_EXPONENT_2, and CKA_COEFFICIENT.

3. The CRYPTOZ resources can be defined as "RACF-DELEGATED" if required. For information about
delegated resources, see the topic on delegated resources in z/OS Security Server RACF Security
Administrator's Guide.

4. Although the use of generic profiles in the CRYPTOZ class is permitted, you should not use a single
generic profile to cover both the SO.token-label and USER.token-label resources. You should not do
this, because there are additional resources in the class controlling key policy. (See Guidelines in this
topic for FIPSEXEMPT.token-label and CLEARKEY.token-label.) Creating a generic profile that uses
generic characters to match both the SO and USER portion of the resource name (for example *.token-
label) will also inadvertently match these other resources and can have unintended consequences.

5. If the CSFSERV class is active, ICSF performs access control checks on the underlying callable
services. The user must have READ access to the appropriate CSFSERV class resource. Table 2 on page
4 lists the resources in the CSFSERV class for token services.

Table 2. Resources in the CSFSERV class for token services

Name of resource Service Called by

CSF1TRC Token or object creation C_InitToken, C_CreateObject,
C_CopyObject

CSF1TRD Token or object deletion C_InitToken, C_DestroyObject

CSF1TRL Token or object find C_Initialize, C_FindObjects,
CSN_FindALLObjects

CSF1SAV Set object attributes C_SetAttributeValue

4 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 2. Resources in the CSFSERV class for token services (continued)

Name of resource Service Called by

CSF1GAV Get object attributes C_GetAttributeValue

CSF1GSK Generate secret key C_GenerateKey

CSF1GKP Generate key pair C_GenerateKeyPair

CSF1PKS Private key sign C_Decrypt, C_DecryptUpdate,
C_DecryptFinal, C_Sign,
C_SignFinal

CSF1PKV Public key verify C_Encrypt, C_EncryptUpdate,
C_EncryptFinal, C_Verify,
C_VerifyFinal

CSF1SKD Secret key decrypt C_Decrypt, C_DecryptUpdate,
C_DecryptFinal

CSF1SKE Secret key encrypt C_Encrypt, C_EncryptUpdate,
C_EncryptFinal

CSFOWH One-way hash C_Digest, C_DigestUpdate,
C_DigestFinal, C_Sign,
C_SignUpDate, C_SignFinal,
C_Verify, C_VerifyUpdate,
C_VerifyFinal

CSF1WPK Wrap key C_WrapKey

CSF1UWK Unwrap key C_UnwrapKey

CSF1HMG Generate MAC C_Sign

CSF1HMV Verify MAC C_Verify

CSF1DVK Derive key C_DeriveKey

CSF1DMK Derive multiple keys C_DeriveKey

CSFIQA PKCS #11 initialization C_Initialize

CSFRNG Random number generate C_GenerateRandom

Guidelines:

1. If your organization controls access to ICSF callable services using the CSFSERV class, define the
resources listed in Table 2 on page 4 and grant access accordingly.

Tip: Define generic profiles. For example, a profile named CSF* covers all the ICSF services. A profile
named CSF1* covers the PKCS #11 subset of the ICSF services, with the exception of those covered by
the CSFOWH, CSFIQF, and CSFRNG resources.

2. The CRYPTOZ class supports generic profiles. Take advantage of this by creating a token naming
convention for your organization and enforce it with generic profiles. For example, require users and
applications to prefix their token names with their user IDs, as with data set names. (See “Sample
scenario for setting up z/OS PKCS #11 tokens” on page 7.)

3. For server applications, grant security officers (server administrators) Strong SO access and their end-
users (server daemon user IDs) Weak User or User R/W access.

4. For applications for which you do not wish to separate the security officer and end-user roles, grant the
appropriate user IDs access to both the SO and USER profiles.

In addition to these two resources for controlling access to tokens, each token also has two additional
resources in the CRYPTOZ class: FIPSEXEMPT.token-name and CLEARKEY.token-name.

Chapter 1. Overview of z/OS support for PKCS #11 5

The FIPSEXEMPT.token-name resource is used for identifying applications that are subject to FIPS 140
restrictions when ICSF is running in FIPS compatibility mode. Refer to “Operating in compliance with
FIPS 140-2” on page 11 for more information.
The CLEARKEY.token-name resource will be queried to determine the policy for creating a clear in
contrast to a secure key when CKA_IBM_SECURE=TRUE has not been specified for key generation.
The following table indicates the significance of the different access levels. When there is no matching
profile defined, the row indicating RACF access of UPDATE or No Decision is considered, the policy is to
base the decision on the key’s sensitivity and whether an Enterprise PKCS #11 coprocessor is
available or not.

Table 3. CLEARKEY.token-label resource access and key security policy

Key Security
Objective

RACF
ACCESS

Action taken when PKCS #11
coprocessor not available or
algorithm not supported

Action taken when PKCS #11
coprocessor available and
algorithm supported

Generate no
secure keys. Stay
compatible with
earlier releases

CONTROL
Sensitive – Clear Key
Non-sensitive – Clear Key

Sensitive – Clear Key
Non-sensitive – Clear Key

Use key sensitivity
and environment
to determine
security

UPDATE or
No Decision Sensitive – Clear Key

Non-sensitive – Clear Key
Sensitive – Secure Key
Non-sensitive – Clear Key

Ensure keys
explicitly marked
sensitive are
always secure
keys

READ Sensitive – Denied
Non-sensitive – Clear Key

Sensitive – Secure Key
Non-sensitive – Clear Key

Prevent
generation or
creation of any
clear keys

NONE Sensitive – Denied
Non-sensitive – Denied

Sensitive – Secure Key
Non-sensitive – Secure Key

Service specific notes:

1. For generate key and generate key-pair, CLEARKEY.token-label checking is always performed as
described previously.

2. For create object, no CLEARKEY.token-label checking is performed. By default, all keys created via
create object are clear keys. To get an encrypted key, the caller must specify
CKA_IBM_SECURE=TRUE. Such keys are not true secure keys since the sensitive key material has
appeared in-the-clear outside the bounds of the secure coprocessor.

3. For copy object, no CLEARKEY.token-label checking is performed. By default, the source key’s security
is carried forward to the target key. Clear keys may be upgraded to encrypted keys by specifying
CKA_IBM_SECURE=TRUE.

4. For unwrap key, the security of the base key always determines the security of the unwrapped key.
However, in the case of clear key unwrap, CLEARKEY.token-label checking is performed to see if clear
keys are permitted.

5. For derive key, the base key can be clear or secure. The resulting derived key will be clear.
CLEARKEY.token-label checking is performed to see if clear keys are permitted.

General notes:

1. You should avoid setting a discrete or generic profile that would restrict clear key creation in the
omnipresent token. This token is used by other z/OS components to create session keys only. It is
typical for session keys to be clear keys. The clear key resource checked for the omnipresent token is
CLEARKEY.SYSTOK-SESSION-ONLY.

6 z/OS: z/OS ICSF Writing PKCS #11 Applications

2. If no CLEARKEY profile is created to protect a given token, the No Decision row governs the action
taken for that token for key creation and generation requests. The action taken depends on whether a
PKCS #11 coprocessor is active or not. If no PKCS #11 coprocessor is active, all key creation and
generate requests result in clear keys. If a PKCS #11 coprocessor is made active, sensitive keys
(CKA_SENSITIVE=TRUE) may be generated as secure keys, depending on the algorithm. This could
have an unexpected effect on existing programs.

Managing tokens
z/OS provides several facilities to manage tokens:

• A C language application programming interface (API) that implements a subset of the PKCS #11
specification. For a description of this API, see Chapter 2, “The C API,” on page 19.

• PKCS #11 specific ICSF callable services. The C API uses these callable services. For information about
these callable services, see Chapter 5, “ICSF PKCS #11 callable services,” on page 89.

• ISPF panels. The ICSF ISPF panels provide the capability to see a formatted view of TKDS objects, and
make limited updates to them.

• The RACF RACDCERT command supports the certificate, public key, and private key objects, and
provides the following subfunctions to manage these objects:

– ADDTOKEN - creates a new empty token
– DELTOKEN - deletes an existing token and everything in it
– LISTTOKEN - displays information on the certificate objects in a token and whether associated public

and private key objects exist
– BIND - connects a RACF certificate, its public key, and potentially its private key to an existing token
– UNBIND - removes a certificate and its keys from a token
– IMPORT - defines a token certificate to RACF

For information about the RACDCERT command, see z/OS Security Server RACF Command Language
Reference and z/OS Security Server RACF Security Administrator's Guide.

• The SAF CRYPTOZ class controls access to tokens. For information about this class, see “Controlling
token access and key policy” on page 2.

• The RACF R_Datalib callable service (IRRSDL00) allows applications to read tokens by providing a user
ID of *TOKEN* to indicate that the key ring name is really a token name. For information about
R_Datalib, see z/OS Security Server RACF Callable Services.

Note: IRRSDL00 was originally created to allow applications to read RACF (SAF) key rings, but has been
enhanced to read PKCS #11 tokens as well. Thus applications written to read key rings can also read
tokens without being modified.

Sample scenario for setting up z/OS PKCS #11 tokens
The following examples show how to control access to z/OS PKCS #11 tokens. In this scenario, a
company wants to use z/OS PKCS #11 tokens as the key stores for its FTP and Web servers. The company
has established a naming convention for their tokens requiring that all tokens have the owning user ID as
the high-level qualifier. The owning user IDs for the FTP and Web server tokens are the daemons FTPSRV
and WEBSRV, respectively. User ABIGAIL is the administrator for the servers.

The security administrator, who has the RACF SPECIAL attribute, creates the protection profiles for the
tokens. The security administrator's goal is to give user ABIGAIL the Security Officer role for these
profiles, and to give the daemon user IDs the User role. To do this, the security administrator issues RACF
TSO commands. First, the security administrator activates the CRYPTOZ class with generics and RACLISTs
it:

SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

Chapter 1. Overview of z/OS support for PKCS #11 7

Next, the security administrator creates profiles for the security officer's access to the FTP and Web
Server tokens:

RDEFINE CRYPTOZ SO.FTPSRV.* UACC(NONE)
RDEFINE CRYPTOZ SO.WEBSRV.* UACC(NONE)

Then, the security administrator creates profiles for the standard user's access to the FTP and Web Server
tokens:

RDEFINE CRYPTOZ USER.FTPSRV.* UACC(NONE)
RDEFINE CRYPTOZ USER.WEBSRV.* UACC(NONE)

The security administrator now gives user ABIGAIL Strong SO power for the tokens by giving her
CONTROL access to the profiles that protect the tokens. The Strong SO power does not allow ABIGAIL to
use the private objects in the tokens:

PERMIT SO.FTPSRV.* CLASS(CRYPTOZ) ID(ABIGAIL) ACC(CONTROL)
PERMIT SO.WEBSRV.* CLASS(CRYPTOZ) ID(ABIGAIL) ACC(CONTROL)

Next, the security administrator gives the users FTPSRV and WEBSRV Weak User power for their
respective tokens. This power allows them to use the private objects within the tokens, but not change
the set of trusted CA certificates.

PERMIT USER.FTPSRV.* CLASS(CRYPTOZ) ID(FTPSRV) ACC(UPDATE)
PERMIT USER.WEBSRV.* CLASS(CRYPTOZ) ID(WEBSRV) ACC(UPDATE)

Finally, the security administrator refreshes the in-storage profiles for the CRYPTOZ class, so that the
changes he just made take effect:

SETROPTS RACLIST(CRYPTOZ) REFRESH

Now the set up is complete: ABIGAIL has Strong SO power over the tokens for the FTP server and the
Web server, and can create the required tokens. FTPSRV and WEBSRV have User power over their
respective tokens, and can use them as key stores after ABIGAIL has created them.

The task now is to create and populate the tokens for the servers with RACF certificates. The following
certificates exist:

1. A root CA certificate installed under CERTAUTH with label 'Local Root CA for Servers'.
2. An end-entity certificate and private key installed under user FTPSRV with label 'FTP Key'. This

certificate was signed by the first certificate.
3. An end-entity certificate and private key installed under user WEBSRV with label 'Web Key'. This

certificate was also signed by the first certificate.

User ABIGAIL issues the following TSO commands to create the tokens, using the company's naming
conventions:

RACDCERT ADDTOKEN(ftpsrv.ftp.server.pkcs11.token)
RACDCERT ADDTOKEN(websrv.web.server.pkcs11.token)

Next, issue the commands that bind the root CA certificate to the two tokens:

RACDCERT BIND(CERTAUTH LABEL('Local Root CA for Servers')
TOKEN(ftpsrv.ftp.server.pkcs11.token)
RACDCERT BIND(CERTAUTH LABEL('Local Root CA for Servers')
TOKEN(websrv.web.server.pkcs11.token)

Now, bind the end-entity certificates to their respective tokens. Each should be the default in the token.

RACDCERT BIND(ID(FTPSRV) LABEL("FTP key")
TOKEN(ftpsrv.ftp.server.pkcs11.token) DEFAULT)
RACDCERT BIND(ID(WEBSRV) LABEL("Web key")
TOKEN(websrv.web.server.pkcs11.token) DEFAULT)

The final step is for the user (ABIGAIL) to configure both servers to use their respective tokens: add
directives to the servers' configuration files.

8 z/OS: z/OS ICSF Writing PKCS #11 Applications

For the web server (IBM HTTP Server), the keyfile directive in the httpd.conf file is set as follows:

keyfile *TOKEN*/WEBSRV.WEB.SERVER.PKCS11.TOKEN SAF

The SAF keyword indicates to SSL that this is a key ring and is controlled by SAF; it is not a KDB file. The
TOKEN keyword indicates that the key ring is a token. The FTP server configuration file also requires a
token-qualified key ring name:

keyfile *TOKEN*/FTPSRV.FTP.SERVER.PKCS11.TOKEN

Sample scenario for controlling clear key processing
The following examples show how the RACF administrator will use the new CRYPTOZ resource,
CLEARKEY.token-label, to set policy on the use of clear keys.

In this scenario, company XYZ wishes to use the ABC program. The ABC program will be creating session
keys and be using the system level token named ‘SYSTOK-SESSION-ONLY’ for cryptographic operations.
Company XYZ wants to ensure that all keys created by the ABC program are secure keys. The user ID
assigned to the ABC program is ABCUSER.

Company XYZ also has other applications that use the system level token for cryptographic operations.
These applications should not be restricted to using only secure keys.

User RACFADM, who has the RACF SPECIAL, creates the profiles necessary by issuing the following RACF
TSO commands:

1. Activate the CRYPTOZ class with generics and RACLIST it:

SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

2. Create the CLEARKEY profile for the system level token:

RDEF CRYPTOZ CLEARKEY.SYSTOK-SESSION-ONLY UACC(NONE)

3. Restrict user ID ABCUSER to secure keys only:

PERMIT CLEARKEY.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(ABCUSER) ACC(NONE)

4. Allow all other user IDs to create clear keys – normal mode:

PERMIT CLEARKEY.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(*) ACC(UPDATE)

5. Refresh the RACLIST to pick up the changes:

SETROPTS RACLIST(CRYPTOZ) REFRESH

Auditing PKCS #11 functions
PKCS #11 functions are audited in the following ways:

• The SMF type 82 subtype 1 record that is written during ICSF initialization contains the data set name of
the token data set (TKDS).

• The SMF type 82 subtype 21 record that is written when a member joins or leaves a sysplex group
contains the cryptographic keys data set (CKDS) data set name if the member joined or left the ICSF
CKDS sysplex group, or the TKDS data set name if the member joined or left the ICSF TKDS sysplex
group.

• ICSF writes SMF type 82 subtype 23 records whenever a TKDS record for a token or token object is
created, modified, or deleted. ICSF does not write SMF records for changes to session objects.

For descriptions of the SMF records that ICSF writes, see z/OS MVS System Management Facilities (SMF).

Chapter 1. Overview of z/OS support for PKCS #11 9

Component trace for PKCS #11 functions
The following ICSF component trace entries trace events related to the token data set (TKDS):

• Type 16 (XCFTMSGS) traces the broadcast of an XCF message related to TKDS I/O.
• Type 17 (XCFTMSGR) traces the receipt of an XCF message related to TKDS I/O.
• Type 18 (XCFTENQ) traces the return of control to the TKDS I/O subtask following the request for an

exclusive ENQ on the SYSZTKDS.TKDSdsn resource.

These trace entry types are always traced.

When viewed via IPCS, these entries show the ASCB address, the TCB address, the ASID, the general
purpose registers, the GPR length, and the CSS address. For more information about IPCS, see z/OS MVS
IPCS User's Guide.

Object types
ICSF supports PKCS #11 session objects and token objects. The following classes of objects can be
associated with these object types:

• Certificate
• Public key
• Private key
• Secret key
• Data objects
• Domain parameters

Session objects
A session object exists for the life of a PKCS #11 session. ICSF allocates session object memory areas to
hold session objects; they are not maintained on DASD. ICSF associates a session object memory area
with the application that requested the creation of a session object. There is only one session object
memory area for an application, even if the application spawns multiple PKCS #11 sessions. The same
session objects are available to all PKCS #11 sessions within an application.

ICSF creates a session object memory area the first time a session object is created, if there is currently
no session object memory area associated with the application. The session object memory area exists as
long as the PKCS #11 application's address space and job step TCB exist. ICSF deletes the memory area
if either the address space or job step TCB terminates. If ICSF terminates, all session object memory
areas are destroyed.

ICSF creates one session-object token, the omnipresent token, to provide PKCS #11 support even if no
other token is available to an application. For example, no other token is available when a TKDS is not
identified using the TKDSN option in the ICSF installation options data set, or when the SAF CRYPTOZ
class has not been activated. This session object token (labeled SYSTOK-SESSION-ONLY) is write
protected, cannot be used to store persistent attributes, and cannot be deleted.

On z/OS, an application can be running in either single address space mode, or in cross memory mode.
The PKCS #11 standard has no concept of cross memory mode, so there is no predefined expected
behavior for a PKCS #11 application running in cross memory mode. If running in cross memory mode,
you should be aware of the guidelines pertaining to session objects described in “Cross memory
considerations” on page 20.

Token objects
Token objects are stored in the token data set, with one record per object. They are visible to all
applications that have sufficient permission to the token. They are persistent: they remain associated with
the token even after a session is closed.

10 z/OS: z/OS ICSF Writing PKCS #11 Applications

Operating in compliance with FIPS 140-2
The National Institute of Standards and Technology (NIST) is the US federal technology agency that works
with industry to develop and apply technology, measurements, and standards. One of the standards
published by NIST is the Federal Information Processing Standard Security Requirements for
Cryptographic Modules, referred to as FIPS 140-2. FIPS 140-2 provides a standard that can be required
by organizations who specify that cryptographic-based security systems are to be used to provide
protection for sensitive or valuable data.

z/OS PKCS #11 cryptography is designed to meet FIPS 140-2 Level 1 criteria, and can be configured to
operate in compliance with FIPS 140-2 specifications. Applications that need to comply with the FIPS
140-2 standard can therefore use the z/OS PKCS #11 services in a way that allows only the cryptographic
algorithms (including key sizes) approved by the standard and restricts access to the algorithms that are
not approved. There are three modes of FIPS operation:

• The services can be configured so that all z/OS PKCS #11 applications are forced to comply with the
FIPS 140-2 standard. This is called FIPS standard mode.

• For installations where only certain z/OS PKCS #11 applications need to comply with the FIPS 140-2
standard, the services can be configured so that only the necessary applications are restricted from
using the non-approved algorithms and key sizes, while other applications are not. This is called FIPS
compatibility mode. You can also use FIPS compatibility mode to test individual applications to ensure
FIPS compliance before switching to FIPS standard mode.

• In FIPS no enforcement mode, ICSF will not impose FIPS algorithm or key size restrictions unless the
calling application explicitly requests it.

ICSF installation options are described in the z/OS Cryptographic Services ICSF System Programmer's
Guide. The installation option FIPSMODE indicates one of the following:
FIPSMODE(YES, FAIL(fail-option))

Indicates that ICSF is to operate in FIPS standard mode - all applications that call ICSF PKCS #11
services will have a need to run in FIPS 140-2 compliant fashion. Therefore, ICSF is to honor FIPS 140
restrictions pertaining to PKCS #11 algorithms and keys for all applications that call ICSF PKCS #11
services.

ICSF initialization will test that it is running on an IBM Z® model type and version/release of z/OS that
supports FIPS. If so, ICSF initialization will also perform a series of cryptographic known answer self
tests. Should a test fail, the action ICSF initialization takes is dependent on the fail option:
FIPSMODE(YES, FAIL(YES))

Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.
FIPSMODE(YES, FAIL(NO))

Indicates ICSF initialization processing is to continue even if there is a failure in any of the tests
performed. However, PKCS #11 support will be limited or nonexistent depending on the test that
failed:

• If ICSF is running on an IBM Z model type or with a version/release of z/OS that does not
support FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available,
but ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will result in
a failure return code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

FIPSMODE(COMPAT, FAIL(fail-option))
Indicates that ICSF is to operate in FIPS compatibility mode - some selected applications that call
ICSF PKCS #11 services will have a need to run in FIPS 140-2 compliant fashion while others may not
be so restricted.

ICSF initialization will test that it is running on an IBM Z model type and version/release of z/OS that
supports FIPS. If so, ICSF initialization will also perform a series of cryptographic known answer self
tests. Should a test fail, the action ICSF initialization takes is dependent on the fail option:

Chapter 1. Overview of z/OS support for PKCS #11 11

FIPSMODE(COMPAT, FAIL(YES))
Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.

FIPSMODE(COMPAT, FAIL(NO))
Indicates ICSF initialization processing is to continue even if there is a failure in any of the tests
performed. However, PKCS #11 support will be limited or nonexistent depending on the test that
failed:

• If ICSF is running on an IBM Z model type or with a version/release of z/OS that does not
support FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available,
but ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will result in
a failure return code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

Assuming all tests are successful, ICSF will honor FIPS 140 restrictions pertaining to PKCS #11
algorithms and keys for selected applications that call ICSF PKCS #11 services. This selection process
is enabled by the following function:

• New CRYPTOZ Class resource profiles will allow the customer to control the scope of FIPS 140-2
compliance at the token level. The naming convention for these resources is:
FIPSEXEMPT.token-name

The levels of access are as follows:

– Profile not defined or Profile defined, caller has access NONE – User not exempt. Algorithms
and key sizes restricted as per FIPS 140-2. For example: usage is treated as if ICSF was
started with FIPSMODE(YES, FAIL(fail-option)).

– Profile defined, caller has access READ – User’s use of the token is exempt from the FIPS
140-2 algorithm restrictions.

A new vendor defined Boolean key attribute is now supported, CKA_IBM_FIPS140. Applications may
explicitly set this at the time the key is created. The default value is FALSE. If set to TRUE, ICSF will
ensure that the key is only used in a FIPS 140-2 compliant fashion, and treated as if
FIPSEXEMPT.token-name access NONE was specified.

Note: If CKA_IBM_FIPS140 is specified as a key generation attribute, this would include the
generation of the key as well.

FIPSMODE(NO,FAIL(fail-option))
Indicates that ICSF should operate in FIPS no enforcement mode, also known as FIPS on-demand
mode. Applications may request strict adherence to FIPS 140 restrictions when requesting ICSF
services. However, applications not requesting FIPS processing are not required to adhere to FIPS
140 restrictions. FIPSEXEMPT.token-name profiles, if they exist, will not be examined. If ICSF is
running on an IBM Z model type that does not support FIPS, requests to generate or use a key with
CKA_IBM_FIPS140=TRUE or those requests that explicitly ask for FIPS processing will result in a
failure return code.

ICSF initialization will test that it is running on an IBM Z model type and version/release of z/OS that
supports FIPS. If so, ICSF initialization will also perform a series of cryptographic known answer self
tests. Should a test fail, the action ICSF initialization takes is dependent on the fail option:
FIPSMODE(NO, FAIL(YES))

Indicates ICSF is to terminate abnormally if there is a failure in any of the tests performed.
FIPSMODE(NO, FAIL(NO))

Indicates ICSF initialization processing is to continue even if there is a failure in any of the tests
performed. However, PKCS #11 support will be limited or nonexistent depending on the test that
failed:

• If ICSF is running on an IBM Z model type or with a version/release of z/OS that does not
support FIPS, most FIPS processing is bypassed. PKCS #11 callable services will be available,
but ICSF will not adhere to FIPS 140 restrictions. Requests to generate or use a key with

12 z/OS: z/OS ICSF Writing PKCS #11 Applications

CKA_IBM_FIPS140=TRUE or explicitly ask for FIPS processing will result in a failure return
code.

• If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

If the FIPSMODE option is not specified, FIPSMODE(NO, FAIL(NO)) is the default.

If any z/OS PKCS #11 application intends to use the services in compliance with the FIPS 140-2 standard,
then, in accordance with that standard, the integrity of the load module containing the z/OS PKCS #11
services must be checked when ICSF is started. This load module is digitally signed, and, in order for
applications using its services to be FIPS 140-2 compliant, the signature must be verified when ICSF is
started. For more information, refer to “Requiring signature verification for ICSF module CSFINPV2” on
page 13.

If any application will use PKCS #11 objects for AES Galois/Counter Mode (GCM) encryption or GMAC
generation, and will have ICSF generate the initialization vectors, then you need to set ECVTSPLX or
CVTSNAME to a unique value. Refer to z/OS Cryptographic Services ICSF System Programmer's Guide for
more information.

Requiring signature verification for ICSF module CSFINPV2
If your installation needs to operate z/OS PKCS #11 in compliance with the FIPS 140-2 standard, then the
integrity of the cryptographic functions shipped by IBM must be verified at your installation during ICSF
startup. The load module that contains the software cryptographic functions is
SYS1.SIEALNKE(CSFINPV2), and this load module is digitally signed when it is shipped from IBM. Using
RACF, you can verify that the module has remained unchanged from the time it was built and installed on
your system. To do this, you create a profile in the PROGRAM class for the CSFINPV2 module, and use this
profile to indicate that signature verification is required before the module can be loaded.

To require signature verification for ICSF module CSFINPV2:

1. Make sure that RACF has been prepared to verify signed programs. As described in z/OS Security
Server RACF Security Administrator's Guide, a security administrator prepares RACF to verify signed
programs by creating a key ring for signature verification, and adding the code-signing CA certificate
that is supplied with RACF to the key ring. If RACF has been prepared to verify signed programs, there
will be a key ring dedicated to signature verification, the code-signing CA certificate will be attached to
the key ring, and the PROGRAM class will be active.

a. If RACF has been prepared to verify signed programs, the discrete profile
IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class will specify the name of the
signature-verification key ring. To determine if a signature key ring is already active, enter the
command:

RLIST FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION

If there is no discrete profile with this name, have your security administrator prepare RACF to
verify signed programs using the information in z/OS Security Server RACF Security Administrator's
Guide.

b. If the signature verification key ring exists, the RLIST command will display information for the
discrete profile IRR.PROGRAM.SIGNATURE.VERIFICATION in the FACILITY class. The name of the
signature verification key ring and the name of the key ring owner will be included in the
APPLICATION DATA field of the RLIST command output. Using this information, enter the
RACDCERT LISTRING command to make sure the code-signing CA certificate is attached to the key
ring:

RACDCERT ID(key-ring-owner) LISTRING(key-ring-name)

The label of the code-signing CA certificate is 'STG Code Signing CA - G2'. If this label is not shown
in the RACDCERT LISTRING command output, have your security administrator prepare RACF to
verify signed programs using the information in z/OS Security Server RACF Security Administrator's
Guide.

Chapter 1. Overview of z/OS support for PKCS #11 13

c. Program control must be active in order for RACF to perform signature verification processing. To
make sure the PROGRAM class is active, enter the SETROPTS LIST command.

SETROPTS LIST

The ACTIVE CLASSES field of the command output should include the PROGRAM class. If it does
not, have your security administrator prepare RACF to verify signed programs using the information
in z/OS Security Server RACF Security Administrator's Guide.

2. Create a profile for the CSFINPV2 program module in the PROGRAM class, indicating that the program
must be signed. The following command specifies that the program should fail to load if the signature
cannot be verified for any reason. This command also specifies that all signature verification failures
should be logged.

Note: Due to space constraints, this command example appears on two lines. However, the RDEFINE
command should be entered completely on one line.

RDEFINE PROGRAM CSFINPV2 ADDMEM('SYS1.SIEALNKE'//NOPADCHK) UACC(READ)
 SIGVER(SIGREQUIRED(YES) FAILLOAD(ANYBAD) SIGAUDIT(ANYBAD))

You will need to activate your profile changes in the PROGRAM class.

SETROPTS WHEN(PROGRAM) REFRESH

Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications
If all z/OS PKCS #11 applications running on your system must comply with the FIPS 140-2 standard,
your installation's system programmer should configure ICSF so that z/OS PKCS #11 operates in FIPS
standard mode. To do this:

1. Make sure the integrity of the cryptographic functions shipped by IBM in the ICSF module CSFINPV2
will be verified by RACF before the module is loaded. This is done by following the instructions in
“Requiring signature verification for ICSF module CSFINPV2” on page 13. If the these steps are not
followed to verify the digital signature of the module, no application calling the z/OS PKCS #11
services can be considered FIPS 140-2 compliant.

2. To specify FIPS standard mode, have you installation's system programmer include the installation
option FIPSMODE(YES, FAIL(fail-option)) in the ICSF installation options data set.

When this option is used, ICSF will operate in FIPS standard mode. In this mode, ICSF initialization will
test that it is running on an IBM Z model type and a version and release of z/OS that supports FIPS. If
so, then ICSF will perform a series of cryptographic known answer tests as required by the FIPS 140-2
standard. If the tests succeed, then all applications calling z/OS PKCS services will be restricted from
using the PKCS #11 algorithms and key sizes that are prohibited by the FIPS 140-2 standard (as
outlined in Table 6 on page 29).

If any of the installation tests should fail, the action ICSF initialization takes depends on the fail-option
specified. The fail-option within the FIPSMODE(YES, FAIL(fail-option)) installation option can be either:

• YES (which indicates that ICSF should terminate abnormally if there is a failure in any of the tests
that are performed).

• NO (which indicates that ICSF initialization processing should continue even if there is a failure in
one or more of the tests that are performed). If an initialization test does fail, however, PKCS #11
support will be limited or nonexistent depending on the test that failed.

– If ICSF is running on an IBM Z model type or with a version of z/OS that does not support FIPS,
most FIPS processing is bypassed. PKCS #11 callable services will be available, but ICSF will not
adhere to FIPS 140 restrictions. Requests to generate or use a key with CKA_IBM_FIPS140=TRUE
will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

For more information on this on other ICSF installation options, refer to z/OS Cryptographic Services
ICSF System Programmer's Guide.

14 z/OS: z/OS ICSF Writing PKCS #11 Applications

Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications
If only certain z/OS PKCS #11 applications running on your system must comply with the FIPS 140-2
standard, while other z/OS PKCS #11 applications do not, your system programmer should configure ICSF
so that z/OS PKCS #11 operates in FIPS compatibility mode. In FIPS compatibility mode, you can use
resource profiles in the CRYPTOZ class to specify, at a token level, the applications that are exempt from
FIPS 140-2 compliance and, for that reason, should not be subject to FIPS restrictions. To configure the
z/OS PKCS #11 services to operate in FIPS compatibility mode:

1. Make sure the integrity of the cryptographic functions shipped by IBM in the module ICSF module
CSFINPV2 will be verified by RACF before the module is loaded. This is done by following the
instructions in “Requiring signature verification for ICSF module CSFINPV2” on page 13. If the these
steps are not followed to verify the digital signature of the module, no application calling the z/OS
PKCS #11 services can be considered FIPS 140-2 compliant.

2. To specify FIPS compatibility mode, have you installation's system programmer include the installation
option FIPSMODE(COMPAT, FAIL(fail-option)) in the ICSF installation options data set.

When this option is used, ICSF will operate in FIPS compatibility mode. In this mode, ICSF initialization
will test that it is running on a IBM Z model type, and a version and release of z/OS, that supports FIPS.
If so, then ICSF will perform a series of cryptographic known answer tests as required by the FIPS
140-2 standard. If the tests are successful, then, by default, all applications calling z/OS PKCS services
will be restricted from using the PKCS #11 algorithms and key sizes that are prohibited by the FIPS
140-2 standard (as outlined in Table 6 on page 29). Using profiles in the CRYPTOZ class, however,
you can identify applications that are exempt from FIPS 140-2 compliance (as described in the next
step).

If any of the installation tests should fail, the action ICSF initialization takes depends on the fail-option
specified. The fail-option within the FIPSMODE(COMPAT, FAIL(fail-option)) installation option can be
either:

• YES (which indicates that ICSF should terminate abnormally if there is a failure in any of the tests
that are performed).

• NO (which indicates that ICSF initialization processing should continue even if there is a failure in
one or more of the tests that are performed). If an initialization test does fail, however, PKCS #11
support will be limited or nonexistent depending on the test that failed.

– If ICSF is running on an IBM Z model type or with a version of z/OS that does not support FIPS,
most FIPS processing is bypassed. PKCS #11 callable services will be available, but ICSF will not
adhere to FIPS 140 restrictions. Requests to generate or use a key with CKA_IBM_FIPS140=TRUE
will result in a failure return code.

– If a known answer test failed, all ICSF PKCS #11 callable services will be unavailable.

For more information on this on other ICSF installation options, refer to z/OS Cryptographic Services
ICSF System Programmer's Guide.

3. To specify which applications must comply with FIPS 140-2 restrictions and which applications do not
need to comply, create FIPSEXEMPT.token-label resource profiles in the CRYPTOZ class. If no
FIPSEXEMPT.token-label resource profiles are created, then all z/OS PKCS #11 applications will be
subject to FIPS restrictions. By creating a FIPSEXEMPT.token-label resource profile for a particular
token, however, you can specify whether or not a particular user ID should be considered exempt from
FIPS restrictions when using that token.

• If a user ID has access authority NONE to the FIPSEXEMPT.token-label resource, ICSF will enforce
FIPS 140-2 compliance for that user ID.

• If a user ID has access authority READ to the FIPSEXEMPT.token-label resource, that user ID is
exempt from FIPS 140-2 restrictions.

To specify which applications must comply with the FIPS 140-2 restrictions, and which do not, the
security administrator must:

a. If it is not already activated, activate the CRYPTOZ class with generics and RACLIST it:

Chapter 1. Overview of z/OS support for PKCS #11 15

SETROPTS CLASSACT(CRYPTOZ) GENERIC(CRYPTOZ) RACLIST(CRYPTOZ)

b. Create the FIPSEXEMPT.token-label resource profile for each z/OS PKCS #11 token. The following
command creates the profile for the omnipresent session-object token SYSTOK-SESSION-ONLY.

RDEF CRYPTOZ FIPSEXEMPT.SYSTOK-SESSION-ONLY UACC(NONE)

Although the use of generic profiles in the CRYPTOZ class is permitted, you should begin the profile
name with “FIPSEXEMPT”. Failure to do this could result in generic characters unintentionally
matching the SO.token-label or USER.token-label resources for token access, and so could have
unintended consequences.

c. Using the PERMIT command, specify READ access authority for user IDs that are exempt from FIPS
140-2 restrictions, and NONE access authority for user IDs that must comply with FIPS 140-2. The
following command indicates that all user IDs are exempt, except for the daemon user ID BOGD.

PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(*) ACC(READ)
PERMIT FIPSEXEMPT.SYSTOK-SESSION-ONLY CLASS(CRYPTOZ) ID(BOGD) ACC(NONE)

d. Refresh the CRYPTOZ class in common storage:

SETROPTS RACLIST(CRYPTOZ) REFRESH

Specifying FIPS 140-2 compliance from within a z/OS PKCS #11 application
When running in FIPS compatability mode or FIPS no enforcement mode, a PKCS #11 application can,
when creating a key, specify that generation and subsequent use of the key must adhere to FIPS 140-2
restrictions. An application specifies this by setting the Boolean attribute CKA_IBM_FIPS140 to TRUE
when creating the key. If an application does this, the FIPS 140-2 restrictions (as outlined in Table 6 on
page 29) will be enforced for the key regardless of any specifications made at the token level using
FIPSEXEMPT.token-label resource profiles.

If the FIPSMODE(YES, FAIL(fail-option)) installation option is specified, indicating FIPS 140-2 compliance
is required by all applications, setting the Boolean attribute CKA_IBM_FIPS140 to TRUE is merely
redundant and does not result in an error.

Preparing to use PKCS #11 applications
Before an installation can use PKCS #11 applications, some preparation is required on the part of the
system programmer, security administrator, auditor, and application programmers. This topic describes
the preparation required.

Tasks for the system programmer
If persistent PKCS #11 tokens and objects are needed, the system programmer allocates a token data set
(TKDS) for use by PKCS #11 functions, and specifies the data set name of the TKDS in the TKDSN option
of the ICSF installation options data set.

The system programmer must decide whether or not sysplex-wide consistency of the TKDS is required,
and must specify the SYSPLEXTKDS option in the ICSF installation options data set to define the
processing of TKDS updates in a sysplex environment.

If any application must comply with the FIPS 140-2 standard, the system programmer must configure
ICSF to run PKCS #11 services in compliance with FIPS 140-2. To do this, the system administrator uses
the FIPSMODE option to specify either FIPS standard mode or FIPS compatibility mode as required. For
more information on the FIPSMODE option, refer to “Operating in compliance with FIPS 140-2” on page
11, and the z/OS Cryptographic Services ICSF System Programmer's Guide.

The system programmer should run the testpkcs11 utility program to test the PKCS #11 configuration.
For information about running the testpkcs11 program, see “Running the pre-compiled version of
testpkcs11” on page 73.

16 z/OS: z/OS ICSF Writing PKCS #11 Applications

Tasks for the security administrator
The security administrator creates a RACF profile to protect the data set that contains the token data set.
It is important to protect this data set because keys in the token data set are not encrypted.

The security administrator needs to grant the appropriate access authority to users for accessing tokens
and objects, by defining profiles in the CRYPTOZ class. For more information, see “Controlling token
access and key policy” on page 2.

The security administrator controls access to the PKCS #11 callable services by defining profiles in the
CSFSERV class. For information about defining profiles in the CSFSERV class, see z/OS Cryptographic
Services ICSF Administrator's Guide. For a list of the resource names for token services, see Table 2 on
page 4.

If PKCS #11 services must run in compliance with the FIPS 140-2 standard, the security administrator
must ensure that the digital signature of the load module that contains the z/OS PKCS #11 services is
verified when ICSF starts. This must be done to satisfy FIPS 140-2 requirements. For more information,
see “Requiring signature verification for ICSF module CSFINPV2” on page 13 and z/OS Security Server
RACF Security Administrator's Guide.

To use Secure Key PKCS #11, an active Enterprise PKCS #11 coprocessor is required. For the steps
necessary to activate the Enterprise PKCS #11 coprocessors, see 'Cryptographic Hardware Features
supported by z/OS ICSF' in z/OS Cryptographic Services ICSF Administrator's Guide.

Tasks for the auditor
Auditors should become familiar with the data in SMF records that is related to PKCS #11 functions. For
more information, see “Auditing PKCS #11 functions” on page 9.

Tasks for application programmers
Application programmers can write applications using the PKCS #11 API provided by ICSF. They should
become familiar with the PKCS #11 specification, and with the information in this book. The PKCS #11
standard can be found at PKCS#11: Cryptographic Token Interface Standard (www.cryptsoft.com/
pkcs11doc).

Application programmers can use the sample program, testpkcs11, to learn about building and running
PKCS #11 applications, and to troubleshoot problems. For information about the sample program, see
Chapter 3, “Sample PKCS #11 C programs ,” on page 73.

Optional Crypto Express adapters
Optional cryptographic adapters (Crypto Express) can be configured as:

• A CCA cryptographic coprocessor.
• An accelerator.
• A PKCS #11 cryptographic coprocessor.

For details on hardware adapters and their configuration options, see 'Cryptographic Hardware Features
supported by z/OS ICSF' in z/OS Cryptographic Services ICSF Administrator's Guide.

In some cases, an optional adapter is required. When the optional adapter is not required, ICSF uses the
optional adapter if available with some restrictions. Otherwise, the operation is done in software. To
determine which services use available hardware, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

• A secure PKCS #11 cryptographic coprocessor is required to generate and use secure PKCS #11 keys.
It can also be used, if present, to offload MIPS for some clear key operations such as DSA and DH
domain parameter generation.

• The CCA cryptographic coprocessor or accelerator adapters are optional. If present, they can be used to
offload MIPS for the following clear key operations:

Chapter 1. Overview of z/OS support for PKCS #11 17

http://www.cryptsoft.com/pkcs11doc
http://www.cryptsoft.com/pkcs11doc

– For an Accelerator or CCA coprocessor:

- RSA Sign/Verify (but not RSA PSS), Encrypt/Decrypt, Key Wrap/Unwrap.
- DH Key Agreement.

– For a CCA coprocessor only:

- RSA and EC Key-pair Generate.
- EC-DH Key Agreement.
- ECDSA Signature Verify.

• Operations that must meet FIPS 140-2 standards are not directed to the CCA cryptographic
coprocessors.

• Operations that must meet FIPS 140-2 standards are only directed to an accelerator when at least one
accelerator was online at ICSF startup. If the first accelerator comes online after ICSF startup, you must
restart ICSF if you want that accelerator to be used for any PKCS #11 RSA functions that require
adherence to the FIPS 140-2 standard. For non-FIPS restricted functions, the accelerator is used
regardless of when the first accelerator comes online.

18 z/OS: z/OS ICSF Writing PKCS #11 Applications

Chapter 2. The C API

ICSF provides a PKCS #11 C language application program interface (API). This topic highlights the
differences between the z/OS API and the PKCS #11 V2.20 specification. To use this API, you must be
familiar with both the PKCS #11 specification and the information in this topic.

All manifest constants specified in this chapter can be found in the csnpdefs.h include file and (with the
exceptions noted) in the PKCS #11 specification.

Using the C API
To create or use a z/OS PKCS #11 token, an application needs to do the following:

1. Implicitly or explicitly load the PKCS #11 API DLL (CSNPCAPI for applications running in 31-bit
addressing mode not using XPLINK, CSNPCA3X for applications running in 31-bit addressing mode
using XPLINK, CSNPCA64 for 64-bit addressing mode).

2. Locate the functions within that DLL, using the C_GetFunctionList function.
3. Call C_Initialize, which enables the application to call other functions in the API.
4. Determine the slots present, using the C_GetSlotList function. This function returns a slot number for

each existing token to which the application has access.
5. To use an existing token, the application iterates through the slots using C_GetTokenInfo to find the

token wanted.

To create a new token, the application uses the C_WaitForSlotEvent function to add a new slot
containing an uninitialized token. The application then uses the C_InitToken function to initialize the
new token and save it in the TKDS.

Deleting z/OS PKCS #11 tokens
Because PKCS #11 tokens are typically physical hardware devices, the PKCS #11 specification provides
no mechanism to delete tokens. However, for z/OS PKCS #11 tokens, which are virtual, there must be a
capability to delete tokens. An application does this by calling the C_InitToken function with a special
label value $$DELETE-TOKEN$$ (assuming code page IBM1047), left-justified and padded on the right to
32 characters.

Tip: Use the constant DEL_TOK defined in csnpdefs.h.

You cannot delete the omnipresent token SYSTOK-SESSION-ONLY (created by ICSF to provide PKCS #11
support even if no other token is available to an application). If an application attempts to delete the
omnipresent token, the C_InitToken function will fail with a return value of
CKR_TOKEN_WRITE_PROTECTED.

Environment
Note: PKCS #11 programs must run in a POSIX-enabled environment such as that created by the z/OS
Unix shell. For additional options, see 'Running POSIX-enabled Programs' in z/OS Language Environment
Programming Guide.

Restriction
The calling program must be running as a Language-Environment-enabled (LE-enabled) application in
TCB mode only. SRB mode is not supported.

Guideline
To use PKCS #11 in SRB mode, you must call the PKCS #11 ICSF callable services directly.

© Copyright IBM Corp. 2007, 2021 19

Cross memory considerations
On z/OS, an application can be running in either single address space mode, or in cross memory mode.
The PKCS #11 standard has no concept of cross memory mode, so there is no predefined expected
behavior for a PKCS #11 application running in cross memory mode.

When running in cross memory mode, the unit of work is running with PRIMARY set to an address space
that differs from HOME. This PRIMARY space may be another address space that is logically part of the
overall application (for example, if the application was designed to be cross memory aware) or it may be a
daemon or subsystem address space dedicated to some system service that the calling application has
invoked using a Program Call (PC). Either way, you should be aware of the following z/OS PKCS #11
application behaviors and associated guidelines.

• The C API invokes Language Environment (LE) services that are not supported in cross memory mode.

Guideline: To use PKCS #11 in cross memory mode, you must call the PKCS #11 ICSF callable services
directly.

• Tokens, token objects, and session objects belonging to installation-defined PKCS #11 tokens (but not
to the omnipresent token) are protected by RACF access control. Additionally, the ICSF callable services
themselves may also be protected by RACF access control. In both cases, the user ID that is used for
the access check is always associated with the unit of work. This is either the user ID assigned to the
HOME ASCB or the user ID assigned to the Task Control Block (TCB) or System Request Block (SRB).

Guideline: If the PRIMARY address space function invoked by a PC uses PKCS #11 services, the user ID
associated with the caller’s unit of work must be appropriately permitted to the CRYPTOZ or CSFSERV
resource being checked. If this is a system service, then all such callers must have access.

• FIPS140 compatibility mode behavior is also controlled by resources in the CRYPTOZ Class.

Guideline: If the system is configured for FIPS140 compatibility mode and the PRIMARY address space
function invoked by a PC is expected to adhere to FIPS 140-2 restrictions, the user ID associated with
the caller’s unit of work should not be permitted to the CRYPTOZ FIPSEXEMPT resource being checked.
If this is a system service, then all such callers should not to be given access.

• By definition, session objects (including those belonging to the omnipresent token) are scoped to a
single address space. For session objects belonging to installation defined PKCS #11 tokens, the
scoping is to the HOME address space at the time of object creation, even if PRIMARY does not equal
HOME. These objects are accessible to all units of work belonging to the HOME address space only,
even if the PRIMARY address space function invoked by a PC is intended to be the logical owner of the
PKCS #11 object.

In contrast, session objects belonging to the omnipresent token are scoped to the PRIMARY address
space at the time of object creation and are addressable by all units of work running with that address
space set as PRIMARY. For session objects created by system services invoked by a PC, such session
objects would not be addressable by the caller once returning from the service call.

Guideline: System services invoked by a PC should use the omnipresent token instead of an installation
defined PKCS #11 token when creating session objects that are to be owned by the system service.

• For certain multipart PKCS #11 cryptographic operations, ICSF will save session-state information
across calls. This state information is scoped to the PRIMARY address space, similar to the scoping for
omnipresent token objects. Such state objects are only addressable to units of work running with that
address space set as PRIMARY.

Guideline: If you begin a multipart PKCS #11 cryptographic operation, you must remain running in the
same PRIMARY address space in order to continue the operation.

Key types and mechanisms supported
ICSF supports the following PKCS #11 key types (CKA_KEY_TYPE). All of these key types are supported in
software. Whether they are also supported in hardware depends on the limitations of your cryptographic
hardware configuration.

• CKK_AES - Key lengths 128, 192, and 256 bits.

20 z/OS: z/OS ICSF Writing PKCS #11 Applications

• CKK_BLOWFISH - Key lengths 8 up to 448 bits (in increments of 8 bits).
• CKK_DES.
• CKK_DES2.
• CKK_DES3.
• CKK_DH - Key lengths 512 up to 2048 bits (in increments of 64 bits).
• CKK_DSA - Key lengths 512 up to 2048 bit prime lengths (in increments of 64 bits).
• CKK_EC (CKK_ECDSA) - Key lengths 160 up to 521 bits.
• CKK_GENERIC_SECRET - Key lengths 8 up to 2048 bits, unless further restricted by the generation

mechanism:

– CKM_DH_PKCS_DERIVE - Key lengths 512 up to 2048 bits.
– CKM_SSL3_MASTER_KEY_DERIVE - 384-bit key lengths.
– CKM_SSL3_MASTER_KEY_DERIVE_DH - 384-bit key lengths.
– CKM_SSL3_PRE_MASTER_KEY_GEN - 384-bit key lengths.
– CKM_TLS_MASTER_KEY_DERIVE - 384-bit key lengths.
– CKM_TLS_MASTER_KEY_DERIVE_DH - 384-bit key lengths.
– CKM_TLS_PRE_MASTER_KEY_GEN - 384-bit key lengths.

• CKK_IBM_CHACHA20.
• CKK_RC4 - Key lengths 8 up to 2048 bits.
• CKK_RSA - Key lengths 512 up to 4096 bits.
• CKK_IBM_SM2 - 256-bit key lengths.
• CKK_IBM_SM4 - A vendor-defined key type for SM4 cryptography.
• CKK_IBM_DILITHIUM – A quantum-safe key type.

The following table shows the mechanisms that are supported by different hardware configurations. All
the mechanisms are supported in software, and some might be available in hardware. If the mechanism is
available in hardware, ICSF uses the hardware mechanism. If the mechanism is not available in hardware,
ICSF uses the software mechanism. The following table also shows the flags that are returned by the
C_GetMechanismInfo function in the CK_MECHANISM_INFO structure. Whether the CKF_HW flag is
returned in the CK_MECHANISM_INFO structure indicates whether the mechanism is supported in the
hardware.

Table 4. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_AES_CBC3 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_CBC_PAD3 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_AES_CTS3 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_ECB3 Bytes [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_AES_GCM3, 7 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_AES_KEY_GEN Bytes [CKF_HW] CKF_GENERATE

CKM_BLOWFISH_CBC4, 7 Bytes CKF_ENCRYPT CKF_DECRYPT

CKM_BLOWFISH_KEY_GEN7 Bytes [CKF_HW] CKF_GENERATE

CKM_DES_CBC7 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

Chapter 2. The C API 21

Table 4. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_DES_CBC_PAD7 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_DES_ECB7 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES_KEY_GEN7 Not applicable [CKF_HW] CKF_GENERATE

CKM_DES2_KEY_GEN7 Not applicable [CKF_HW] CKF_GENERATE

CKM_DES3_CBC3 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_CBC_PAD3 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_DES3_ECB3 Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_DES3_KEY_GEN Not applicable [CKF_HW] CKF_GENERATE

CKM_DH_PKCS_DERIVE Bits [CKF_HW] CKF_DERIVE

CKM_DH_PKCS_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_DH_PKCS_PARAMETER_GEN Bits [CKF_HW] CKF_GENERATE

CKM_DSA Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_DSA_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_DSA_PARAMETER_GEN Bits [CKF_HW] CKF_GENERATE

CKM_DSA_SHA1 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_EC_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR
CKF_EC_F_P1 CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDH1_DERIVE Bits [CKF_HW] CKF_DERIVE CKF_EC_F_P1

CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDSA Bits [CKF_HW] CKF_SIGN CKF_VERIFY
CKF_EC_F_P1 CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_ECDSA_SHA1 Bits [CKF_HW] CKF_SIGN CKF_VERIFY
CKF_EC_F_P1 CKF_EC_NAMEDCURVE2

CKF_EC_UNCOMPRESS

CKM_GENERIC_SECRET_KEY_GEN3 Bits [CKF_HW] CKF_GENERATE

CKM_IBM_ATTRIBUTEBOUND_WRAP8

(vendor specific mechanism -
0x80020004). IBM proprietary wrap/
unwrap mechanism that includes the
Boolean usage attributes along with the
key data. Only supported for secure keys
that have the CKA_IBM_ATTRBOUND
attribute set TRUE

Not applicable [CKF_HW] CKF_WRAP CKF_UNWRAP

CKM_IBM_ISO2_SM4_MAC
(0x80058008)

Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

22 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 4. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_IBM_ISO2_SM4_MAC_GENERAL
(0x80050008)

Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_IBM_SM2 (0x8005000B) Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_IBM_SM2_ENCRYPT (0x8005000D) Not applicable [CKF_HW] CKF_WRAP CKF_UNWRAP

CKM_IBM_SM2_KEY_PAIR_GEN
(0x8005000A)

Not applicable [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_IBM_SM2_SM3 (0x8005000C) Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_IBM_SM3 (0x8005000E) Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_IBM_SM4_CBC (0x80050002) Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT

CKM_IBM_SM4_ECB (0x80050004) Not applicable [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP

CKM_IBM_SM4_ECB_ENCRYPT_DATA
(0x80050009)

Not applicable [CKF_HW] CKF_DERIVE

CKM_IBM_SM4_KEY_GEN (0x80050001) Not applicable [CKF_HW] CKF_GENERATE

CKM_IBM_SM4_MAC (0x80058007) Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_IBM_SM4_MAC_GENERAL
(0x80050007)

Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_MD2 Not applicable CKF_DIGEST

CKM_MD2_RSA_PKCS5, 6 Bits CKF_SIGN CKF_VERIFY

CKM_MD5 Not applicable CKF_DIGEST

CKM_MD5_HMAC Not applicable CKF_SIGN CKF_VERIFY

CKM_MD5_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_PBE_SHA1_DES3_EDE_CBC Not applicable [CKF_HW] CKF_GENERATE

CKM_RC44, 7 Bits CKF_ENCRYPT CKF_DECRYPT

CKM_RC4_KEY_GEN7 Bits [CKF_HW] CKF_GENERATE

CKM_RIPEMD160 Not applicable CKF_DIGEST

CKM_RSA_PKCS5, 6 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_WRAP CKF_UNWRAP CKF_SIGN
CKF_VERIFY CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_RSA_PKCS_KEY_PAIR_GEN Bits [CKF_HW] CKF_GENERATE_KEY_PAIR

CKM_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_RSA_X_5095, 6, 7 Bits [CKF_HW] CKF_ENCRYPT CKF_DECRYPT
CKF_SIGN CKF_VERIFY
CKF_SIGN_RECOVER
CKF_VERIFY_RECOVER

CKM_SHA_1 Not applicable [CKF_HW] CKF_DIGEST

Chapter 2. The C API 23

Table 4. Mechanism information as returned by C_GetMechanismInfo (CK_MECHANISM_INFO) (continued)

Type (CK_MECHANISM_TYPE) Size factor Flags

CKM_SHA_1_HMAC Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA1_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA1_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224 Not applicable [CKF_HW] CKF_DIGEST

CKM_SHA224_HMAC Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA224_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256 Not applicable [CKF_HW] CKF_DIGEST

CKM_SHA256_HMAC Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA256_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384 Not applicable [CKF_HW] CKF_DIGEST

CKM_SHA384_HMAC Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA384_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512 Not applicable [CKF_HW] CKF_DIGEST

CKM_SHA512_HMAC Not applicable [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512_RSA_PKCS5, 6 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SHA512_RSA_PKCS_PSS9 Bits [CKF_HW] CKF_SIGN CKF_VERIFY

CKM_SSL3_KEY_AND_MAC_DERIVE7 Not applicable CKF_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE7 Bytes CKF_DERIVE

CKM_SSL3_MASTER_KEY_DERIVE_DH7 Bytes CKF_DERIVE

CKM_SSL3_MD5_MAC7 Bits CKF_SIGN CKF_VERIFY

CKM_SSL3_PRE_MASTER_KEY_GEN7 Bytes [CKF_HW] CKF_GENERATE

CKM_SSL3_SHA1_MAC7 Bits CKF_SIGN CKF_VERIFY

CKM_TLS_KEY_AND_MAC_DERIVE7 Not applicable CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE7 Bytes CKF_DERIVE

CKM_TLS_MASTER_KEY_DERIVE_DH7 Bytes CKF_DERIVE

CKM_TLS_PRE_MASTER_KEY_GEN7 Bytes [CKF_HW] CKF_GENERATE

CKM_TLS_PRF7 Not applicable CKF_DERIVE

CKM_XOR_BASE_AND_DATA Not applicable [CKF_HW] CKF_DERIVE

Footnotes for Table 4 on page 21
1 The PKCS #11 standard designates two ways of implementing Elliptic Curve Cryptography, which is
nicknamed Fp and F2

m. z/OS PKCS #11 supports the Fp variety only.

24 z/OS: z/OS ICSF Writing PKCS #11 Applications

2 ANSI X9.62 has the following ASN.1 definition for Elliptic Curve domain parameters:

 Parameters ::= CHOICE {
 ecParameters ECParameters,
 namedCurve OBJECT IDENTIFIER,
 implicitlyCA NULL }

z/OS PKCS #11 supports the specification of CKA_EC_PARAMS attribute by using the namedCurved
CHOICE. The following NIST-recommended named curves are supported:

• secp192r1 – { 1 2 840 10045 3 1 1 }
• secp224r1 – { 1 3 132 0 33 }
• secp256r1 – { 1 2 840 10045 3 1 7 }
• secp384r1 – { 1 3 132 0 34 }
• secp521r1 – { 1 3 132 0 35 }

The following Brainpool-defined named curves are supported:

• brainpoolP160r1 – { 1 3 36 3 3 2 8 1 1 1 }
• brainpoolP192r1 – { 1 3 36 3 3 2 8 1 1 3 }
• brainpoolP224r1 – { 1 3 36 3 3 2 8 1 1 5 }
• brainpoolP256r1 – { 1 3 36 3 3 2 8 1 1 7 }
• brainpoolP320r1 – { 1 3 36 3 3 2 8 1 1 9 }
• brainpoolP384r1 – { 1 3 36 3 3 2 8 1 1 11 }
• brainpoolP512r1 – { 1 3 36 3 3 2 8 1 1 13 }

The following Edwards named curves are supported:

• Ed448 – { 1 3 101 113 }
• Ed25519 – { 1 3 101 112 }

The following Montgomery named curves are supported:

• X448 – { 1 3 101 111 }
• X25519 – { 1 3 101 110 }

In addition, z/OS PKCS #11 has limited support for the ecParameters CHOICE. When specified, the DER
encoding must contain the optional cofactor field and must not contain the optional Curve.seed field. Also,
calls to C_GetAttributeValue to retrieve the CKA_EC_PARAMS attribute always returns the value in the
namedCurve form regardless of how the attribute was specified when the object was created. Due to
these limitations, the CKF_EC_ECPARAMETERS flag is not turned on for the applicable mechanisms.
3 Mechanism not present on a system that is export controlled.
4 Mechanism limited to 56-bit on a system that is export controlled.
5 In general, z/OS PKCS #11 expects RSA private keys to be in Chinese Remainder Theorem (CRT) format.
However, for Decrypt, Sign, or UnwrapKey (z890, z990 or higher only) where one of the following is true,
the shorter Modulus Exponent (ME) is permitted:

• There is an accelerator present and the key is less than or equal to 2048 bits in length.
• There is a coprocessor present and the key is less than or equal to 1024 bits in length and FIPS

restrictions do not apply.
6 RSA public or private keys that have a public exponent greater than 8 bytes in length can only be used
when a coprocessor or accelerator is present.
7 Mechanism supported for clear keys only.
8 Mechanism supported for secure keys only.

Chapter 2. The C API 25

9 PARAM field restrictions for PSS algorithms:

typedef struct CK_RSA_PKCS_PSS_PARAMS {
CK_MECHANISM_TYPE hashAlg;
CK_RSA_PKCS_MGF_TYPE mgf;
CK_ULONG sLen;
} CK_RSA_PKCS_PSS_PARAMS;

• For mechanisms other than CKM_RSA_PKCS_PSS, the hashAlg must match the mechanism specified.
For mechanism CKM_RSA_PKCS_PSS, the hashAlg must be a supported SHA algorithm.

• mgf must match the algorithm specified by hashAlg
• slen must be either 0 or the size of the output of the hashAlg specified.

The following table lists the mechanisms supported by specific cryptographic hardware. When a particular
mechanism is not available in hardware, ICSF uses the software implementation of the mechanism.

Table 5. Mechanisms supported by specific cryptographic hardware

Machine type and
cryptographic hardware Mechanisms supported Notes

z9 - CEX2C CKM_DES_KEY_GEN
CKM_DES2_KEY_GEN
CKM_DES3_KEY_GEN
CKM_RSA_PKCS
CKM_RSA_X_509
CKM_MD5_RSA_PKCS
CKM_SHA1_RSA_PKCS
CKM_DES_CBC
CKM_DES_CBC_PAD
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_SHA_1
CKM_BLOWFISH_KEY_GEN
CKM_RC4_KEY_GEN
CKM_AES_KEY_GEN
CKM_SSL3_PRE_MASTER_KEY_GEN
CKM_TLS_PRE_MASTER_KEY_GEN
CKM_GENERIC_SECRET_KEY_GEN
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_EC_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB

PCIXCC set plus:
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_DES_ECB
CKM_DES3_ECB
CKM_SHA224_RSA_PKCS
CKM_SHA256_RSA_PKCS
CKM_SHA224
CKM_SHA256
CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_CTS
CKM_AES_ECB

This is the base set.

AES key operations limited to
128 bits in length (maximum).

RSA private key operations
limited to 1024 bits in length
(maximum) and no key pair
generation capability.

RSA private key operations
limited to 40496 bits in length
(maximum).

26 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 5. Mechanisms supported by specific cryptographic hardware (continued)

Machine type and
cryptographic hardware Mechanisms supported Notes

z10 - CEX2C or CEX3C z9 CEX2C set plus:
CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to
256 bits in length (maximum).

IBM zEnterprise 196 -
CEX3C z9 CEX2C set plus:

CKM_SHA384_RSA_PKCS
CKM_SHA512_RSA_PKCS
CKM_SHA384
CKM_SHA512

AES key operations limited to
256 bits in length (maximum).

RSA private key operations
limited to 4096 bits in length
(maximum).

IBM zEnterprise EC12 or
IBM zEnterprise BC12
with an Enterprise PKCS
#11 coprocessor

z10 set plus:
CKM_IBM_ATTRIBUTEBOUND_WRAP
CKM_PBE_SHA1_DES3_EDE_CBC
CKM_DSA_PARAMETER_GEN
CKM_DH_PKCS_KEY_PAIR_GEN
CKM_DH_PKCS_DERIVE
CKM_ECDH1_DERIVE
CKM_RSA_PKCS_PSS
CKM_SHA1_RSA_PKCS_PSS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS_PSS

Requires the Sept. 2013 or later
licensed internal code (LIC).

The CKM_ECDH1_DERIVE
mechanism may only derive a
clear key.

IBM zEnterprise EC12 or
later CKM_IBM_SM4_CBC

CKM_IBM_SM4_ECB
CKM_IBM_SM4_ECB_ENCRYPT_DATA
CKM_IBM_ISO2_SM4_MAC
CKM_IBM_ISO2_SM4_MAC_GENERAL
CKM_IBM_SM4_KEY_GEN
CKM_IBM_SM4_MAC
CKM_IBM_SM4_MAC_GENERAL
CKM_XOR_BASE_AND_DATA

A regional cryptographic server
must be active.

IBM z13 or z13s zEC12 and zBC12 set

IBM z14 or z14 ZR1 z13 and z13s set

Chapter 2. The C API 27

Table 5. Mechanisms supported by specific cryptographic hardware (continued)

Machine type and
cryptographic hardware Mechanisms supported Notes

IBM z15 z14 and z14 ZR1 set With the November 2019 or later
licensed internal code (LIC):

• CKM_ECDH1_DERIVE
mechanism may derive a
secure key.

• CKK_IBM_DILITHIUM key
type may be used to create or
generate Dilithium secure
keys.

• CKA_IBM_PROTKEY_EXTRACT
ABLE may be specified for
generation, creation, and
derivation of supported key
types (AES, DES3, secp256r1,
secp384r1, secp521r1,
Ed448, and Ed25519).

z890, z990, or later with
Regional Cryptographic
Server Gen 1

CKM_IBM_SM4_CBC
CKM_IBM_SM4_ECB
CKM_IBM_SM4_ECB_ENCRYPT_DATA
CKM_IBM_SM4_KEY_GEN
CKM_IBM_SM4_MAC
CKM_IBM_SM4_MAC_GENERAL
CKM_IBM_ISO2_SM4_MAC
CKM_IBM_ISO2_SM4_MAC_GENERAL
CKM_XOR_BASE_AND_DATA

z890, z990, or later with
Regional Cryptographic
Server Gen 2

CKM_IBM_SM2
CKM_IBM_SM2_ENCRYPT
CKM_IBM_SM2_KEY_PAIR_GEN
CKM_IBM_SM2_SM3
CKM_IBM_SM3

28 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 5. Mechanisms supported by specific cryptographic hardware (continued)

Machine type and
cryptographic hardware Mechanisms supported Notes

z890, z990, or later with
Regional Cryptographic
Server Gen 3

CKM_AES_CBC
CKM_AES_CBC_PAD
CKM_AES_ECB
CKM_AES_KEY_GEN
CKM_DES3_CBC
CKM_DES3_CBC_PAD
CKM_DES3_ECB
CKM_DES3_KEY_GEN
CKM_ECDSA
CKM_EC_KEY_PAIR_GEN
CKM_RSA_PKCS
CKM_RSA_PKCS_KEY_PAIR_GEN
CKM_RSA_PKCS_PSS
CKM_RSA_X_509
CKM_SHA1_RSA_PKCS
CKM_SHA1_RSA_PKCS_PSS
CKM_SHA224_RSA_PKCS
CKM_SHA224_RSA_PKCS_PSS
CKM_SHA256_RSA_PKCS
CKM_SHA256_RSA_PKCS_PSS
CKM_SHA384_RSA_PKCS
CKM_SHA384_RSA_PKCS_PSS
CKM_SHA512_RSA_PKCS
CKM_SHA512_RSA_PKCS_PSS

The following table lists the algorithms and uses (by mechanism) that are not allowed when operating in
compliance with FIPS 140-2. For more information about how the z/OS PKCS #11 services can be
configured to operate in compliance with the FIPS 140-2 standard, see “Operating in compliance with
FIPS 140-2” on page 11.

Table 6. Restricted algorithms and uses when running in compliance with FIPS 140-2

Algorithm Mechanisms Usage disallowed

AES GCM CKM_AES_GCM GCM encryption or GMAC
generation with externally
generated initialization vectors.
Initialization vector lengths
other than 12 bytes. Tag byte
sizes 4 and 8.

Blowfish CKM_BLOWFISH_KEY_GEN,
CKM_BLOWFISH_CBC

All

ChaCha20-Poly1305 CKM_IBM_CHACHA20_POLY1305 All

Diffie Hellman CKM_DH_PKCS_DERIVE Prime size less than 1024 bits.

CKM_DH_PKCS_PARAMETER_GEN Prime sizes other than 1024 or
2048 bits.

Dilithium N/A All

DSA CKM_DSA_SHA1, CKM_DSA Prime sizes less than 1024 bits.

Chapter 2. The C API 29

Table 6. Restricted algorithms and uses when running in compliance with FIPS 140-2 (continued)

Algorithm Mechanisms Usage disallowed

DSA CKM_DSA_PARAMETER_GEN,
CKM_DSA_KEY_PAIR_GEN or Sign

Combinations other than the
following:

• Prime size = 1024 bits,
subprime size = 160 bits.

• Prime size = 2048 bits,
subprime size = 224 bits, or
256 bits.

HMAC CKM_SHA_1, CKM_SHA224, CKM_SHA256,
CKM_SHA384, CKM_SHA512

Base key sizes less than one half
the output size.

MD2 CKM_MD2, CKM_MD2_RSA_PKCS All

MD5 CKM_MD5, CKM_MD5_RSA_PKCS,
CKM_MD5_HMAC

All

RC4 CKM_RC4 All

RIPEMD CKM_RIPEMD160 All

RSA CKM_RSA_X_509 All

RSA CKM_RSA_PKCS Key sizes less than 1024 bits.

RSA CKM_RSA_PKCS_KEY_PAIR_GEN or Sign
without an active accelerator

Key sizes that are less than
1024 bits or not a multiple of
256 bits or public key exponents
less than 0x010001.

Single DES CKM_DES_ECB, CKM_DES_CBC,
CKM_DES_CBC_PAD

All

SSL3 CKM_SSL3_MD5_MAC,
CKM_SSL3_SHA1_MAC,
CKM_SSL3_MASTER_KEY_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE_DH,
CKM_SSL3_KEY_AND_MAC_DERIVE

All

TLS CKM_TLS_MASTER_KEY_DERIVE,
CKM_TLS_MASTER_KEY_DERIVE_DH,
CKM_TLS_KEY_AND_MAC_DERIVE

Base key sizes less than 10
bytes.

Triple DES CKM_DES3_ECB, CKM_DES3_CBC,
CKM_DES3_CBC_PAD

Two key Triple DES.

Three key Triple DES encryption
or key wrap where the individual
DES key parts are not unique.

Additional manifest constants for Dilithium quantum-safe
algorithm support

#define CKK_IBM_DILITHIUM 0x 80010023
#define CKA_IBM_DILITHIUM_MODE 0x 80000010

30 z/OS: z/OS ICSF Writing PKCS #11 Applications

Objects and attributes supported
ICSF supports the following PKCS #11 object types (CK_OBJECT_CLASS):

• CKO_DATA.
• CKO_CERTIFICATE - CKC_X_509.
• CKO_DOMAIN_PARAMETERS - CKK_DSA and CKK_DH.
• CKO_PUBLIC_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, CKK_DH, and CKK_IBM_SM2.
• CKO_PRIVATE_KEY - CKK_RSA, CKK_EC (CKK_ECDSA), CKK_DSA, CKK_DH, and CKK_IBM_SM2.
• CKO_SECRET_KEY - CKK_DES, CKK_DES2, CKK_DES3, CKK_AES, CKK_BLOWFISH, CKK_RC4,

CKK_GENERIC_SECRET, CKK_IBM_CHACHA20, and CKK_IBM_SM4.

The footnotes described in Table 7 on page 31 are taken from the PKCS #11 specification and apply to
the attribute tables that follow.

Table 7. Common footnotes for object attribute tables

Footnote
number Footnote meaning

1 Must be specified when object is created with C_CreateObject.

2 Must not be specified when object is created with C_CreateObject.

3 Must be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

4 Must not be specified when object is generated with C_GenerateKey or C_GenerateKeyPair.

5 Must be specified when object is unwrapped with C_UnwrapKey.

6 Must not be specified when object is unwrapped with C_UnwrapKey.

7 Cannot be revealed if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA_EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue call, or in the process of
copying object with a C_CopyObject call. However, it is possible that a particular token may not
permit modification of the attribute, or may not permit modification of the attribute during the
course of a C_CopyObject call.

9 Default value is token-specific, and may depend on the values of other attributes.

10 Can only be set to TRUE by the SO user.

11 May be changed during a C_CopyObject call but not on a C_SetAttributeValue call

12 Attribute cannot be changed once set to CK_TRUE. It becomes a read only attribute.

13 May be changed to CK_TRUE during the course of a copy operation but only if the source object is
not already a secure key. When the source object is a secure key, the attribute is read only.

14 If CKA_PRIVATE=TRUE, can only be set TRUE by a user who is a Strong SO or a Weak USER who
is also an SO.

15 Only modifiable with an Enterprise PKCS #11 coprocessor configured with August 2013 or later
licensed internal code (LIC).

Table 8. Data object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object is
created (or generated) only.

Chapter 2. The C API 31

Table 8. Data object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31. (continued)

Attribute Data type Notes

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened to the
TKDS if TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty. The
string is assumed to come from the IBM1047 code
page.

An application can set or change the value at any time.

CKA_ID Byte array Key or other identifier. Default is empty.

An application can set or change the value at any time.

CKA_VALUE Byte array Any value. Default is empty.

An application can set or change the value at any time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come from
the IBM1047 code page.

An application can set or change the value at any time.

CKA_OBJECT_ID Byte array DER-encoded OID. Default is empty.

An application can set or change the value at any time.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This attribute
may be retrieved via C_GetAttributeValue. It is not valid
in the attribute list of any other function or callable
service.

Table 9. X.509 certificate object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object is
created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened to
the TKDS if TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the object is
created (or generated) only.

32 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 9. X.509 certificate object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty. The
string is assumed to come from the IBM1047 code
page.

An application can set or change the value at any time.

CKA_CERTIFICATE_TYPE CK_CERTIFICATE_TYPE Always CKC_X_509.

An application can specify the value when the object is
created (or generated) only.

CKA_TRUSTED CK_BBOOL Always set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_SUBJECT Byte array DER-encoding as found in certificate. If not specified,
ICSF sets it from the certificate. If specified, ICSF
enforces that it matches the subject in the certificate.

An application can specify the value when the object is
created (or generated) only.

CKA_ID Byte array Key identifier. Default is empty.

An application can set or change the value at any time.

CKA_ISSUER Byte array DER-encoding as found in certificate. If not specified,
ICSF sets from the certificate. If specified, ICSF
enforces that it matches the issuer in the certificate

An application can specify the value when the object is
created (or generated) only.

CKA_SERIAL_NUMBER Byte array DER-encoding as found in certificate. If not specified,
ICSF sets from the certificate. If specified, ICSF
enforces that it matches the serial number in the
certificate.

An application can specify the value when the object is
created (or generated) only.

CKA_VALUE Byte array This is the DER-encoding of the certificate. (Required.)

An application can specify the value when the object is
created (or generated) only.

Chapter 2. The C API 33

Table 9. X.509 certificate object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_CERTIFICATE_CATEGORY CK_ULONG Categorization of the certificate:

1
Token user

2
Certificate authority

3
Other entity

If not specified, ICSF sets it to 2 if the certificate has the
BasicConstraints CA flag on. Otherwise it is not set.

Note: If specified (or defaulted) to 2, the certificate is
considered a CA certificate. The user must have
appropriate authority.

An application can set or change the value at any time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come from
the IBM1047 code page.

An application can specify the value when the object is
created (or generated) only.

CKA_IBM_DEFAULT
(vendor specific attribute -
0x80000002)

CK_BBOOL Default flag. Default is FALSE.

An application can set or change the value at any time.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This attribute
may be retrieved via C_GetAttributeValue. It is not valid
in the attribute list of any other function or callable
service.

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the
object is created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the
object is created (or generated) only.

34 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty.
The string is assumed to come from the IBM1047
code page.

An application can set or change the value at any
time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any
time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key: CKK_AES, CKK_BLOWFISH, CKK_DES,
CKK_DES2, CKK_DES3, CKK_GENERIC_SECRET,
CKK_IBM_CHACHA20, CKK_IBM_SM4, or
CKK_RC4.

An application can specify the value when the
object is created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_END_DATE8 CK_DATE End date for the key. Default is empty.

An application can set or change the value at any
time.

CKA_DERIVE8 CK_BBOOL TRUE if key supports key derivation (other keys can
be derived from this one). Default is TRUE.

An application can set or change the value at any
time.

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_GEN
_MECHANISM2, 4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the
key. Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_ENCRYPT8 CK_BBOOL TRUE if key supports encryption9. Default is FALSE
for Generic secret keys. For all other key types,
default is TRUE.

An application can set or change the value at any
time.

CKA_VERIFY8 CK_BBOOL TRUE if key supports verification where the
signature is an appendix to the data. Default is
TRUE.

An application can set or change the value at any
time.

Chapter 2. The C API 35

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_WRAP8 CK_BBOOL TRUE if key supports wrapping (can be used to
wrap other keys).9 Default is FALSE for Generic
secret keys. For all other key types, default is
TRUE.

An application can set or change the value at any
time.

CKA_DECRYPT8 CK_BBOOL TRUE if key supports decryption.9 Default is FALSE
for Generic secret keys. For all other key types,
default is TRUE.

An application can set or change the value at any
time.

CKA_SIGN8 CK_BBOOL TRUE if key supports signatures where the
signature is an appendix to the data.9 Default is
TRUE.

An application can set or change the value at any
time.

CKA_UNWRAP8 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys)9. Default is FALSE for Generic
secret keys. For all other key types, default is
TRUE.

An application can set or change the value at any
time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Caller can change from
TRUE to FALSE only. Default is TRUE.

An application can set or change the value, as per
PKCS #11 restrictions.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Caller can change from
FALSE to TRUE only. Default is FALSE.

An application can set or change the value, as per
PKCS #11 restrictions.

Note: When CKA_IBM_SECURE is TRUE,
CKA_SENSITIVE is set TRUE.

CKA_ALWAYS_SENSITIVE2, 4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2, 4,
6

CK_BBOOL TRUE if key has never had the CKA_EXTRACTABLE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot
directly manipulate this value, but can view it.

CKA_VALUE1, 4, 6, 7 Byte array The key.

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

36 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_VALUE_LEN2, 3 CK_ULONG Length of the key in bytes (AES, Blowfish, RC4, and
Generic secret keys only).

An application can specify the value when the
object is generated only.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the
object. Default is empty. The string is assumed to
come from the IBM1047 code page.

An application can specify the value when the
object is created (or generated) only.

CKA_IBM_FIPS140
(vendor specific attribute
0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the
object is created (or generated) only.

CKA_TRUSTED10, 14 CK_BBOOL The wrapping key can be used to wrap keys with
CKA_WRAP_WITH_TRUSTED set to CK_TRUE.
Always set CK_FALSE when the key is created or
generated. May be set to CK_TRUE via
C_SetAttributeValue, with restrictions

CKA_WRAP_WITH
_TRUSTED12

CK_BBOOL CK_TRUE if the key can only be wrapped with a
wrapping key that has CKA_TRUSTED set to
CK_TRUE. Default is CK_FALSE

CKA_CHECK_VALUE Byte array 3-byte key checksum

The attribute has no value (0 length) for clear keys
or for secure keys created prior to ICSF FMID
HCR77B1. Otherwise, normal PKCS #11
processing rules apply.

CKA_IBM_REGIONAL6, 12
(vendor specific attribute -
0x80050000)

CK_BBOOL If TRUE, key is for a regional cryptographic server.

The default value will be TRUE for key types
supported by the regional cryptographic servers
and FALSE for all others.

When this is set TRUE by the caller, the key type
must be one that is supported by the regional
cryptographic servers.

CKA_IBM_SECURE6, 11, 12, 13
(vendor specific attribute -
0x80000006)

CK_BBOOL CK_TRUE if the key is an Enterprise PKCS #11
coprocessor or a regional cryptographic server
secure key.

A secure key may be requested by setting this
attribute CK_TRUE during key creation or
generation. For key generation, if set CK_FALSE or
not specified at all, ICSF will determine the
security.

When this is set TRUE by the caller or ICSF, the key
is treated as sensitive (CKA_SENSITIVE is set
TRUE).

CKA_IBM_ALWAYS
_SECURE2, 4, 6
(vendor specific attribute -
0x80000008)

CK_BBOOL CK_TRUE if key has always had the
CKA_IBM_SECURE attribute set to CK_TRUE. Only
applicable to secure keys. This attribute will not
have a value for clear keys.

Chapter 2. The C API 37

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_IBM_CARD
_COMPLIANCE2, 4, 6, 15
(vendor specific
attribute - 0x80000007)

CK_ULONG A bit mask field indicating the Enterprise PKCS #11
coprocessor compliance mode of the secure key:

n/a 0 (Regional cryptographic server key)
FIPS2009 1
BSI2009 2
FIPS2011 4
BSI2011 8
BSICC2017 64

Only applicable to secure keys. This attribute will
not have a value for clear keys. When changing the
value, the new value must specify the current mode
or modes and any additional new modes. Changing
the value to 0 results in the compliance mode
being reset to the current compliance mode of the
coprocessor.

CKA_IBM_ATTRBOUND2, 6
(vendor specific attribute -
0x80010004)

CK_BBOOL CK_TRUE has the following meaning:

• The key must only be exported with its boolean
usage attributes.

• The key may be used as a signing or verification
key for attribute bound wrap/unwrap.

• The key may be used as a wrapping or
unwrapping key for attribute bound wrap/
unwrap.

• The key may not be used as a wrapping key for
non-attribute bound wrap.

May only be set CK_TRUE during key generation.
The default value is CK_FALSE.

When this is set TRUE by the caller, the key will be
a secure key (CKA_IBM_SECURE is set TRUE).

Only applicable to Enterprise PKCS #11 secure
keys. This attribute will not have a value for clear
keys.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This
attribute may be retrieved via C_GetAttributeValue.
It is not valid in the attribute list of any other
function or callable service.

CKA_IBM_PROTKEY_
EXTRACTABLE 11
(vendor specific attribute -
0x8001000C)

CK_BBOOL CK_TRUE if the key is an Enterprise PKCS #11
coprocessor secure key capable of being used as a
protected key. This attribute may only be CK_TRUE
for AES and DES3 keys.

A protected-key-capable secure key may be
requested by setting this attribute to CK_TRUE
during key creation, generation, or derivation. If
explicitly set to CK_FALSE, a secure key will be
generated that may never be used for protected
key operations. If not specified, either a clear or
secure key that may not be used as a protected key
will be generated, created, or derived, depending
on the value of CKA_IBM_SECURE.

The value may only be changed from CK_TRUE to
CK_FALSE.

38 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 10. Secret key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_IBM_PROTKEY_NEVER_
EXTRACTABLE 2, 4, 6
(vendor specific attribute -
0x8001000D)

CK_BBOOL CK_TRUE if key has never had the
CKA_IBM_PROTKEY_EXTRACTABLE attribute set
to CK_TRUE.

Table 11. Public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object is
created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened to the
TKDS if TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE.

An application can specify the value when the object is
created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty. The
string is assumed to come from the IBM1047 code page.

An application can set or change the value at any time.

CKA_TRUSTED10, 14 CK_BBOOL The wrapping key can be used to wrap keys with
CKA_WRAP_WITH_TRUSTED set to CK_TRUE. Always
set CK_FALSE when the key is created or generated. May
be set to CK_TRUE via C_SetAttributeValue, with
restrictions

CKA_SUBJECT Byte array DER-encoding. Default empty.

An application can set or change the value at any time.

CKA_ID Byte array Key identifier. Default empty.

An application can set or change the value at any time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_DH, CKK_DSA, CKK_EC, CKK_RSA,
CKK_IBM_SM2, and CKK_IBM_DILITHIUM only.

An application can specify the value when the object is
created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any time.

Chapter 2. The C API 39

Table 11. Public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_DERIVE8,9 CK_BBOOL TRUE if key supports key derivation (if other keys can be
derived from this one). Default is TRUE.

An application can set or change the value at any time.

CKA_LOCAL2, 4, 6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_KEY_GEN
_MECHANISM2, 4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key.
Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_ENCRYPT8,9 CK_BBOOL TRUE if key supports encryption. Default is TRUE.

An application can set or change the value at any time.

CKA_VERIFY8,9 CK_BBOOL TRUE if key supports verification where the signature is
an appendix to the data. Default is TRUE.

An application can set or change the value at any time.

CKA_VERIFY_RECOVER8,9 CK_BBOOL TRUE if key supports verification where the data is
recovered from the signature. Default is TRUE.

An application can set or change the value at any time.

CKA_WRAP8,9 CK_BBOOL TRUE if key supports wrapping (can be used to wrap
other keys). Default is TRUE.

An application can set or change the value at any time.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come from
the IBM1047 code page.

An application can specify the value when the object is
created (or generated) only.

CKA_IBM_FIPS140
(vendor specific attribute
0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object is
created (or generated) only.

CKA_IBM_REGIONAL6, 12
(vendor specific attribute -
0x80050000)

CK_BBOOL If TRUE, key is for a regional cryptographic server.

The default value will be TRUE for key types supported
by the regional cryptographic servers and FALSE for all
others.

When this is set TRUE by the caller, the key type must be
one that is supported by the regional cryptographic
servers.

40 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 11. Public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_IBM_SECURE11, 12, 13
(vendor specific attribute -
0x80000006)

CK_BBOOL CK_TRUE if the key is an Enterprise PKCS #11
coprocessor or a regional cryptographic server secure
key.

A secure key may be requested by setting this attribute
CK_TRUE during key creation or generation.

For key-pair generation, if set CK_FALSE or not specified
at all, ICSF will determine the security. If set CK_TRUE
by the caller or ICSF, the matching private key will also
be a secure key.

CKA_IBM_CARD_
COMPLIANCE2, 4, 6, 15
(vendor specific attribute -
0x80000007)

CK_ULONG A bit mask field indicating the Enterprise PKCS #11
coprocessor compliance mode of the secure key:

n/a 0 (Regional cryptographic server key)
FIPS2009 1
BSI2009 2
FIPS2011 4
BSI2011 8
BSICC2017 64

Only applicable to secure keys. This attribute will not
have a value for clear keys. When changing the value,
the new value must specify the current mode or modes
and any additional new modes. Changing the value to 0
results in the compliance mode being reset to the
current compliance mode of the coprocessor.

CKA_IBM_ATTRBOUND11, 12,
13
(vendor specific attribute -
0x80010004)

CK_BBOOL CK_TRUE if the key may be used as a wrapping key to
export attribute bound secret keys. (Such public keys
may not be used for non-attribute bound wrap.)
CK_TRUE also means that the key may be used as an
attribute bound unwrap verification key. The default
value is CK_FALSE.

An attribute bound key may be requested by setting this
attribute CK_TRUE during key creation or generation.

When this is set TRUE by the caller, the key will be a
secure key (CKA_IBM_SECURE is set TRUE).

Only applicable to Enterprise PKCS #11 secure keys.
This attribute will not have a value for clear keys.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This attribute
may be retrieved via C_GetAttributeValue. It is not valid
in the attribute list of any other function or callable
service.

Table 12. RSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on
page 31.

Attribute Data type Notes

CKA_MODULUS1, 4 Big integer Modulus n

An application can specify the value when the
object is created (or generated) only.

Chapter 2. The C API 41

Table 12. RSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on
page 31. (continued)

Attribute Data type Notes

CKA_MODULUS_BITS2, 3 CK_ULONG Length in bits of modulus n

An application can specify the value when the
object is created (or generated) only.

CKA_PUBLIC_EXPONENT1 Big integer Public exponent e

An application can specify the value when the
object is created (or generated) only.

Table 13. DSA public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on
page 31.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,3 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits
or 256 bits for p > 1024 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 14. Diffie-Hellman public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on
page 31.

Attribute Data type Notes

CKA_PRIME1,3 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,3 Big integer Base g

CKA_VALUE1,4 Big integer Public value y

Table 15. Elliptic Curve public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on
page 31.

Attribute Data type Notes

CKA_EC_PARAMS1,3

(CKA_ECDSA_PARAMS)

Byte array DER-encoding of an ANSI X9.62 Parameters value

CKA_EC_POINT1,4 Byte array DER-encoding of an ANSI X9.62 ECPoint value Q

Table 16. SM2 public key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_EC_PARAMS2,4 Byte array DER-encoding of an ANSI X9.62 Parameters value

CKA_EC_POINT1,4 Byte array DER-encoding of an ANSI X9.62 ECPoint value Q

42 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 17. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the object is
created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened to the
TKDS if TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_PRIVATE11 CK_BBOOL Default value on create is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE.

An application can specify the value when the object is
created (or generated) only.

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty. The
string is assumed to come from the IBM1047 code
page.

An application can set or change the value at any time.

CKA_SUBJECT Byte array DER-encoding.

An application can set or change the value at any time.

CKA_ID Byte array Default is empty.

An application can set or change the value at any time.

CKA_KEY_TYPE1, 5 CK_KEY_TYPE Type of key. CKK_EC, CKK_DH, CKK_DSA, CKK_RSA,
CKK_IBM_SM2, and CKK_IBM_DILITHIUM only.

An application can specify the value when the object is
created (or generated) only.

CKA_START_DATE8 CK_DATE Start date for the key. Default empty.

An application can set or change the value at any time.

CKA_END_DATE8 CK_DATE End date for the key. Default empty.

An application can set or change the value at any time.

CKA_DERIVE8,9 CK_BBOOL TRUE if key supports key derivation (if other keys can be
derived from this one). Default is TRUE.

An application can set or change the value at any time.

CKA_LOCAL2, 4 ,6 CK_BBOOL TRUE only if key was generated locally.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_KEY_GEN
_ MECHANISM2, 4, 6

CK_MECHANISM_TYPE Identifier of the mechanism used to generate the key
material. Always CK_UNAVAILABLE_INFORMATION.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_DECRYPT8,9 CK_BBOOL TRUE if key supports decryption. Default is TRUE.

An application can set or change the value at any time.

Chapter 2. The C API 43

Table 17. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_SIGN8,9 CK_BBOOL TRUE if key supports signatures where the signature is
an appendix to the data. Default is TRUE.

An application can set or change the value at any time.

CKA_SIGN_RECOVER8,9 CK_BBOOL TRUE if key supports signatures where the data can be
recovered from the signature. Default is TRUE.

An application can set or change the value at any time.

CKA_UNWRAP8,9 CK_BBOOL TRUE if key supports unwrapping (can be used to
unwrap other keys). Default is TRUE.

An application can set or change the value at any time.

CKA_EXTRACTABLE8 CK_BBOOL TRUE if key is extractable. Default is TRUE.

An application can set or change the value, as per PKCS
#11 restrictions. Caller can change from TRUE to FALSE
only.

CKA_SENSITIVE8 CK_BBOOL TRUE if key is sensitive. Default is FALSE.

An application can set or change the value, as per PKCS
#11 restrictions. Caller can change from FALSE to TRUE
only.

Note: When CKA_IBM_SECURE is TRUE,
CKA_SENSITIVE is set TRUE.

CKA_ALWAYS_SENSITIVE2 ,4, 6 CK_BBOOL TRUE if key has always had the CKA_SENSITIVE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_NEVER_EXTRACTABLE2 ,4,
6

CK_BBOOL TRUE if key has never had the CKA_EXTRACTABLE
attribute set to TRUE.

Implicitly set by ICSF. An application cannot directly
manipulate this value, but can view it.

CKA_APPLICATION Printable EBCDIC string Description of the application that created the object.
Default is empty. The string is assumed to come from
the IBM1047 code page.

An application can specify the value when the object is
created (or generated) only.

CKA_IBM_FIPS140
(vendor specific attribute
0x80000005)

CK_BBOOL TRUE if the key must only be used in a FIPS 140-2
compliant fashion. The default value is FALSE.

An application can specify the value when the object is
created (or generated) only.

CKA_WRAP_WITH_TRUSTED12 CK_BBOOL CK_TRUE if the key can only be wrapped with a
wrapping key that has CKA_TRUSTED set to CK_TRUE.
Default is CK_FALSE

44 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 17. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_IBM_REGIONAL2, 6, 12
(vendor specific attribute -
0x80050000)

CK_BBOOL If TRUE, key is for a regional cryptographic server.

The default value will be TRUE for key types supported
by the regional cryptographic server and FALSE for all
others.

When this is set TRUE by the caller, the key type must
be one that is supported by the regional cryptographic
servers.

CKA_IBM_SECURE6, 11, 12, 13
(vendor specific attribute -
0x80000006)

CK_BBOOL CK_TRUE if the key is an Enterprise PKCS #11
coprocessor or a regional cryptographic server secure
key.

A secure key may be requested by setting this attribute
CK_TRUE during key creation or generation.

For key-pair generation, if set CK_TRUE by the caller or
ICSF, the matching public key will also be a secure key.
If set CK_FALSE or not specified at all, ICSF will
determine the security.

When this is set TRUE by the caller or ICSF, the key is
treated as sensitive (CKA_SENSITIVE is set TRUE).

May be changed from FALSE to TRUE during
C_CopyObject.

CKA_IBM_ALWAYS_
SECURE2 ,4, 6
(vendor specific attribute -
0x80000008)

CK_BBOOL CK_TRUE if key has always had the CKA_IBM_SECURE
attribute set to CK_TRUE. Only applicable to secure
keys. This attribute will not have a value for clear keys.

CKA_IBM_CARD_
COMPLIANCE2 ,4, 6, 15
(vendor specific attribute -
0x80000007)

CK_ULONG A bit mask field indicating the compliance mode of the
Enterprise PKCS #11 coprocessor at the time the
secure key was created:

n/a 0 (Regional cryptographic server key)
FIPS2009 1
BSI2009 2
FIPS2011 4
BSI2011 8
BSICC2017 64

Only applicable to secure keys. This attribute will not
have a value for clear keys. When changing the value,
the new value must specify the current mode or modes
and any additional new modes. Changing the value to 0
results in the compliance mode being reset to the
current compliance mode of the coprocessor.

Chapter 2. The C API 45

Table 17. Private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7 on page 31.
(continued)

Attribute Data type Notes

CKA_IBM_
ATTRBOUND2 ,6
(vendor specific attribute
- 0x80010004)

CK_BBOOL CK_TRUE has the following meaning:

• The key must only be exported with its boolean usage
attributes.

• The key may be used as a signing key for attribute
bound wrap.

• The key may be used as an unwrapping key for
attribute bound unwrap.

May only be set CK_TRUE during key generation. The
default value is CK_FALSE.

When this is set TRUE by the caller, the key will be a
secure key (CKA_IBM_SECURE is set TRUE).

Only applicable to Enterprise PKCS #11 secure keys.
This attribute will not have a value for clear keys.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This attribute
may be retrieved via C_GetAttributeValue. It is not valid
in the attribute list of any other function or callable
service.

Table 18. RSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7
on page 31.

Attribute Data type Notes

CKA_MODULUS1, 4, 6 Big integer Modulus n

An application can specify the value when the
object is created (or generated) only.

CKA_PUBLIC_EXPONENT4, 6 Big integer Public exponent e

An application can specify the value when the
object is created (or generated) only.

CKA_PRIVATE_EXPONENT1,
4,6 ,7

Big integer Private exponent d

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIME_14, 6, 7 Big integer Prime p

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_PRIME_24, 6, 7 Big integer Prime q

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

46 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 18. RSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7
on page 31. (continued)

Attribute Data type Notes

CKA_EXPONENT_14, 6, 7 Big integer Private exponent d modulo p-1

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_EXPONENT_24, 6, 7 Big integer Private exponent d modulo q-1

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

CKA_COEFFICIENT4, 6, 7 Big integer CRT coefficient q-1 mod p

Sensitive key part.

An application can specify the value when the
object is created (or generated) only.

Table 19. DSA private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7
on page 31.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4,6 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits
or 256 bits for p > 1024 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

Table 20. Diffie-Hellman private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 7 on page 31.

Attribute Data type Notes

CKA_PRIME1,4,6 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4,6 Big integer Base g

CKA_VALUE1,4,6,7 Big integer Private value x

CKA_VALUE_BITS2,6 CK_ULONG Length in bits of private value x. For non-FIPS or
when prime bit size = 1024, the default is 160. For
FIPS prime bit size = 2048, the default is 256

Table 21. Elliptic Curve private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 7 on page 31.

Attribute Data type Notes

CKA_EC_PARAMS1,4,6

(CKA_ECDSA_PARAMS)

Byte array DER-encoding of an ANSI X9.62 Parameters value

CKA_VALUE1,4,6,7 Big integer ANSI X9.62 private value d

Chapter 2. The C API 47

Table 21. Elliptic Curve private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 7 on page 31. (continued)

Attribute Data type Notes

CKA_IBM_PROTKEY_
EXTRACTABLE 11
(vendor specific attribute -
0x8001000C)

CK_BBOOL CK_TRUE if the key is an Enterprise PKCS #11
coprocessor secure key capable of being used as a
protected key. This attribute may only be CK_TRUE
for secp256r1, secp384r1, secp521r1, Ed448,
and Ed25519 private keys.

A protected-key-capable secure key may be
requested by setting this attribute to CK_TRUE
during key creation, generation, or derivation. If
explicitly set to CK_FALSE, a secure key will be
generated that may never be used for protected
key operations. If not specified, either a clear or
secure key that may not be used as a protected
key will be generated, created, or derived,
depending on the value of CKA_IBM_SECURE.

The value may only be changed from CK_TRUE to
CK_FALSE.

CKA_IBM_PROTKEY_NEVER_
EXTRACTABLE 2, 4, 6
(vendor specific attribute -
0x8001000D)

CK_BBOOL CK_TRUE if key has never had the
CKA_IBM_PROTKEY_EXTRACTABLE attribute set
to CK_TRUE.

Table 22. SM2 private key object attributes that ICSF supports. For the meanings of the footnotes, see Table 7
on page 31.

Attribute Data type Notes

CKA_EC_PARAMS2,4,6 Byte array DER-encoding of an ANSI X9.62 Parameters value

CKA_VALUE2,4,6,7 Byte array ANSI X9.62 private value d

Table 23. Domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see Table
7 on page 31.

Attribute Data type Notes

CKA_CLASS1 CKO_OBJECT_CLASS Object class (type).

An application can specify the value when the
object is created (or generated) only.

CKA_TOKEN11 CK_BBOOL Default value on create is FALSE. Object hardened
to the TKDS if TRUE.

CKA_PRIVATE11 CK_BBOOL Default value on create is FALSE

CKA_MODIFIABLE11 CK_BBOOL Default value is TRUE

CKA_LABEL Printable EBCDIC string Application-specific nickname. Default is empty.
The string is assumed to come from the IBM1047
code page.

An application can set or change the value at any
time.

48 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 23. Domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see Table
7 on page 31. (continued)

Attribute Data type Notes

CKA_KEY_TYPE1 CK_KEY_TYPE Type of key the domain parameters can be used to
generate. CKK_DSA and CKK_DH only in this
release

CKA_LOCAL2,4 CK_BBOOL TRUE only if the parameters were generated
locally

CKA_APPLICATION Printable EBCDIC string Description of the application that created the
object. Default is empty. The string is assumed to
come from the IBM1047 code page.

CKA_IBM_ICSF_HANDLE
(vendor specific attribute -
0x80010009)

Printable EBCDIC string 44-character ICSF record locator value. This
attribute may be retrieved via
C_GetAttributeValue. It is not valid in the attribute
list of any other function or callable service.

Table 24. DSA domain parameter object attributes that ICSF supports. For the meanings of the footnotes, see
Table 7 on page 31.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_SUBPRIME1,4 Big integer Subprime q (160 bits for p <= 1024 bits, 224 bits
or 256 bits for p > 1024 bits)

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

Table 25. Diffie-Hellman domain parameter object attributes that ICSF supports. For the meanings of the
footnotes, see Table 7 on page 31.

Attribute Data type Notes

CKA_PRIME1,4 Big integer Prime p (512 to 2048 bits in steps of 64 bits)

CKA_BASE1,4 Big integer Base g

CKA_PRIME_BITS2,3 CK_ULONG Length of the prime value

Table 26. Dilithium public key object attributes that ICSF supports. For the meanings of the footnotes, see Table
7 on page 31.

Attribute Data type Notes

CKA_IBM_DILITHIUM_MODE
1,3

Byte array DER-encoding of a Dilithium key mode.

The value is returned left-justified in a 16-byte
field padded with zeros.

The following mode is supported:

• CRYSTALS-Dilithium (6,5) - { 1 3 6 1 4 1 2 267 1
6 5 }

CKA_VALUE1,4 Big integer Public value.

Chapter 2. The C API 49

Table 27. Dilithium private key object attributes that ICSF supports. For the meanings of the footnotes, see
Table 7 on page 31.

Attribute Data type Notes

CKA_IBM_DILITHIUM_MODE
1,4,6

Byte array DER-encoding of a Dilithium key mode.

The value is returned left-justified in a 16-byte
field padded with zeros.

The following mode is supported:

• CRYSTALS-Dilithium (6,5) - { 1 3 6 1 4 1 2 267 1
6 5 }

CKA_VALUE1,4,6,7 Big integer Private value.

Library, slot, and token information
PKCS #11 maintains information about the library code, slots, and tokens, which can be set and queried
by calling the library functions. For z/OS, this information is as follows:

CK_INFO - Returned by C_GetInfo. not modifiable by applications.

• cryptokiVersion - 2.20
• manufacturerID - "IBM Corp. "
• libraryDescription - "z/OS PKCS11 library "
• libraryVersion - 7.70

CK_SLOT_INFO - Returned by C_GetSlotInfo. not modifiable by applications

• slotDescription - "z/OS PKCS11 - virtual smart card "
• manufacturerID - "IBM Corp. "
• flags - for any slot returned by C_GetSlotList the following flags are set:

– CKF_TOKEN_PRESENT=ON
– CKF_REMOVABLE_DEVICE=ON
– CKF_HW_SLOT=OFF

• hardwareVersion - 7.70
• firmwareVersion - 7.70

CK_TOKEN_INFO - Set by C_InitToken, Returned by C_GetTokenInfo

• label - As specified
• manufacturerID - "z/OS PKCS11 API " (Might be set to other values if the token was initialized

outside of the C API.)
• model - "HCR7770 " (coincides with the release that the token was created) (Might be set to other

values if the token was initialized outside of the C API.)
• serialNumber - "0 " (Might be set to other values if the token was initialized outside of the C API.)
• flags - the following flags are set ON for any initialized token. All others are OFF:

– CKF_RNG
– CKF_PROTECTED_AUTHENTICATION_PATH
– CKF_TOKEN_INITIALIZED
– CKF_USER_PIN_INITIALIZED

• ulMaxSessionCount - CK_UNAVAILABLE_INFORMATION
• ulSessionCount - CK_UNAVAILABLE_INFORMATION

50 z/OS: z/OS ICSF Writing PKCS #11 Applications

• ulMaxRwSessionCount - CK_UNAVAILABLE_INFORMATION
• ulRwSessionCount - CK_UNAVAILABLE_INFORMATION
• ulMaxPinLen - CK_UNAVAILABLE_INFORMATION
• ulMinPinLen - 0
• ulTotalPublicMemory - CK_UNAVAILABLE_INFORMATION
• ulFreePublicMemory - CK_UNAVAILABLE_INFORMATION
• ulTotalPrivateMemory - CK_UNAVAILABLE_INFORMATION
• ulFreePrivateMemory - CK_UNAVAILABLE_INFORMATION
• hardwareVersion - 7.70
• firmwareVersion - 7.70
• utcTime - GMT date and time that the token was last updated

CK_SESSION_INFO - Returned by C_GetSessionInfo

• slotId - The slot in question
• state - CK_UNAVAILABLE_INFORMATION
• flags - As defined by the PKCS #11 specification
• ulDeviceError - A mapping of the last failing ICSF return and reason code values related to this session.

For more information see “Function return codes” on page 70.

Functions supported
ICSF supports a subset of the standard PKCS #11 functions, and several non-standard functions.

Standard functions supported
Table 28 on page 51 lists the standard PKCS #11 functions that ICSF supports. Any function not listed is
not supported and returns the CKR_FUNCTION_NOT_SUPPORTED return code.

Table 28. Standard PKCS #11 functions that ICSF supports

Function Usage notes

General purpose functions:

C_Initialize() • The library always uses OS locking for thread serialization.
Therefore, if C_Initialize is called with the CreateMutex,
DestroyMutex, LockMutex, and UnlockMutex function pointer
arguments set and the CKF_OS_LOCKING_OK flag is not set,
C_Initialize fails and returns the value CKR_CANT_LOCK.

• When C_Initialize is called, the application-specific set of (virtual)
slot IDs is allocated, one for each preexisting token that the
application is authorized to use. (See the descriptions of
C_GetSlotList and C_WaitForSlotEvent for information on how this
set can increase in size.) The one exception to this occurs when
C_Initialize is called by a child process after fork. If the PKCS #11
environment is inherited by the child process, the slot list and token
state is not refreshed.

• A call to C_Initialize() from an application that is not running
POSIX-enabled results in error CKR_FUNCTION_FAILED being
returned.

Chapter 2. The C API 51

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_Finalize() dlclose() cannot be used as an implicit C_Finalize(). If an application
uses dlclose() without calling C_Finalize(), and reinitializes PKCS
#11, a subsequent call to C_Initialize() will result in error
CKR_FUNCTION_FAILED being returned.

C_GetInfo()

C_GetFunctionList()

Slot and token management
functions:

C_GetSlotList() • If the pSlotList argument is NULL, this function returns only the
number of allocated slots. In the process of returning this number
C_GetSlotList searches for new tokens to which the application has
access. If new tokens are found, slot IDs are allocated for them.
This search is only performed if at least 5 seconds has passed since
the last search was made.

• If the pSlotList argument is non-NULL, this function returns the
current list of virtual slot IDs. No attempt is made to discover new
tokens created by other applications.

• The tokenPresent argument flag is meaningless as all allocated
slots have a token present.

C_GetSlotInfo()

C_GetTokenInfo()

C_WaitForSlotEvent() • This function is used to dynamically allocate an additional slot in
order to create a new token. There are no other slot events. The
newly allocated slot ID is returned as the pSlot argument.

• The CKF_DONT_BLOCK argument flag is meaningless because this
function never blocks. The dynamic slot allocation occurs
synchronously.

C_GetMechanismList() The list of functions returned reflects the capabilities of the current
cryptographic hardware configuration.

Note: The loss or addition of hardware on the fly is not detected or
reflected. (For example, on a z9-109, if the only CEX2C present is
deactivated, this function still returns the mechanisms that require
an active CEX2C to function.)

C_GetMechanismInfo() The output of this function reflects the capabilities of the current
cryptographic hardware configuration.

C_InitToken() Tokens are protected by the security manager through profiles in the
CRYPTOZ class. PINs are not used. The pPin and ulPinLen arguments
are ignored.

C_InitPIN() Tokens are protected by the security manager through profiles in the
CRYPTOZ class. PINs are not used. This function performs no
operation and always returns CKR_OK.

C_SetPIN() Tokens are protected by the security manager through profiles in the
CRYPTOZ class. PINs are not used. This function performs no
operation and always returns CKR_OK.

52 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

Session management
functions:

C_OpenSession() The Notify and pApplication arguments are ignored.

C_CloseSession()

C_CloseAllSessions()

C_GetSessionInfo() The state field returned is meaningless. It is always set to
CK_UNAVAILABLE_INFORMATION.

C_GetOperationState() Returns CKR_STATE_UNSAVEABLE if a find is active or more than one
cryptographic operation is active.

C_SetOperationState()

C_Login() Tokens are protected by the security manager through profiles in the
CRYPTOZ class. Applications are always logged in to the security
manager. PINs are not used. This function has no effect on the
session state and always returns CKR_OK.

C_Logout() Tokens are protected by the security manager through profiles in the
CRYPTOZ class. Applications are always logged in to the security
manager. PINs are not used. This function has no effect on the
session state and always returns CKR_OK.

Object management functions:

C_CreateObject()

C_CopyObject()

C_DestroyObject()

C_GetObjectSize()

C_GetAttributeValue()

C_SetAttributeValue()

C_FindObjectsInit() ulCount may have the high order bit on to specify to use the RTL rule
array keyword when invoking the ICSF CSFPTRL callable service.

C_FindObjects() Sensitive attributes cannot be used as search criteria when the object
is marked sensitive or not exportable. Doing so results in no match
found.

C_FindObjectsFinal()

Encryption functions:

Chapter 2. The C API 53

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_EncryptInit() The following mechanisms are supported:

• CKM_DES_ECB
• CKM_DES_CBC
• CKM_DES_CBC_PAD
• CKM_DES3_ECB
• CKM_DES3_CBC
• CKM_DES3_CBC_PAD
• CKM_RSA_PKCS
• CKM_RSA_X_509
• CKM_AES_CBC
• CKM_AES_ECB
• CKM_AES_CBC_PAD
• CKM_AES_CTS
• CKM_AES_GCM (Limited to single part encryption only and for no

more than 1048576 bytes of clear text.)
• CKM_BLOWFISH_CBC
• CKM_RC4
• CKM_IBM_SM4_ECB
• CKM_IBM_SM4_CBC

Notes:

• A secure key may not be used for mechanisms CKM_AES_CTS,
CKM_AES_GCM, or GCMIVGEN.

• All SM4 mechanisms require an active regional cryptographic
server.

C_Encrypt()

C_EncryptUpdate() Multiple-part encryption is not supported for the CKM_RSA_PKCS
and CKM_RSA_X_509 mechanisms.

C_EncryptFinal() Multiple-part encryption is not supported for the CKM_RSA_PKCS
and CKM_RSA_X_509 mechanisms.

Decryption functions:

54 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_DecryptInit() The following mechanisms are supported:

• CKM_DES_ECB
• CKM_DES_CBC
• CKM_DES_CBC_PAD
• CKM_DES3_ECB
• CKM_DES3_CBC
• CKM_DES3_CBC_PAD
• CKM_RSA_PKCS
• CKM_RSA_X_509
• CKM_AES_CBC
• CKM_AES_ECB
• CKM_AES_CBC_PAD
• CKM_AES_CTS
• CKM_AES_GCM (Limited to single part decryption only and for no

more than 1048576 bytes of clear text.)
• CKM_BLOWFISH_CBC
• CKM_RC4
• CKM_IBM_SM4_ECB
• CKM_IBM_SM4_CBC

Notes:

• A secure key may not be used for mechanisms CKM_AES_CTS,
CKM_AES_GCM, or GCMIVGEN.

• All SM4 mechanisms require an active regional cryptographic
server.

C_Decrypt()

C_DecryptUpdate() Multiple-part decryption is not supported for the CKM_RSA_PKCS
and CKM_RSA_X_509 mechanisms.

C_DecryptFinal() Multiple-part decryption is not supported for the CKM_RSA_PKCS
and CKM_RSA_X_509 mechanisms.

Message digesting functions:

C_DigestInit() The following mechanisms are supported:

• CKM_MD2
• CKM_MD5
• CKM_SHA_1
• CKM_SHA224
• CKM_SHA256
• CKM_SHA384
• CKM_SHA512
• CKM_RIPEMD160
• CKM_IBM_SM3

Chapter 2. The C API 55

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_Digest()

C_DigestUpdate()

C_DigestFinal()

Signing and message
authentication coding (MACing)
functions:

56 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_SignInit() The following mechanisms are supported:

• CKM_RSA_X_509
• CKM_RSA_PKCS
• CKM_MD5_RSA_PKCS
• CKM_SHA1_RSA_PKCS
• CKM_SHA224_RSA_PKCS
• CKM_SHA256_RSA_PKCS
• CKM_SHA384_RSA_PKCS
• CKM_SHA512_RSA_PKCS
• CKM_DSA
• CKM_DSA_SHA1
• CKM_MD5_HMAC
• CKM_SHA_1_HMAC
• CKM_SHA224_HMAC
• CKM_SHA256_HMAC
• CKM_SHA384_HMAC
• CKM_SHA512_HMAC
• CKM_SSL3_MD5_MAC
• CKM_SSL3_SHA1_MAC
• CKM_MD2_RSA_PKCS
• CKM_ECDSA
• CKM_ECDSA_SHA1
• CKM_RSA_PKCS_PSS
• CKM_SHA1_RSA_PKCS_PSS
• CKM_SHA224_RSA_PKCS_PSS
• CKM_SHA256_RSA_PKCS_PSS
• CKM_SHA384_RSA_PKCS_PSS
• CKM_SHA512_RSA_PKCS_PSS
• CKM_IBM_SM4_MAC_GENERAL
• CKM_IBM_SM4_MAC
• CKM_IBM_ISO2_SM4_MAC_GENERAL
• CKM_IBM_ISO2_SM4_MAC
• CKM_IBM_SM2
• CKM_IBM_SM2_SM3

Note: All SMx mechanisms require an active regional cryptographic
server.

C_Sign()

C_SignUpdate() Multiple-part signature is not supported for the CKM_RSA_PKCS and
CKM_RSA_X_509 mechanisms.

Chapter 2. The C API 57

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_SignFinal() Multiple-part signature is not supported for the CKM_RSA_PKCS and
CKM_RSA_X_509 mechanisms.

Functions for verifying
signatures and message
authentication codes (MACs):

C_VerifyInit() The following mechanisms are supported:

• CKM_RSA_X_509
• CKM_RSA_PKCS
• CKM_MD5_RSA_PKCS
• CKM_SHA1_RSA_PKCS
• CKM_SHA224_RSA_PKCS
• CKM_SHA256_RSA_PKCS
• CKM_SHA384_RSA_PKCS
• CKM_SHA512_RSA_PKCS
• CKM_DSA
• CKM_DSA_SHA1
• CKM_MD5_HMAC
• CKM_SHA_1_HMAC
• CKM_SHA224_HMAC
• CKM_SHA256_HMAC
• CKM_SHA384_HMAC
• CKM_SHA512_HMAC
• CKM_SSL3_MD5_MAC
• CKM_SSL3_SHA1_MAC
• CKM_MD2_RSA_PKCS
• CKM_ECDSA
• CKM_ECDSA_SHA1
• CKM_RSA_PKCS_PSS
• CKM_SHA1_RSA_PKCS_PSS
• CKM_SHA224_RSA_PKCS_PSS
• CKM_SHA256_RSA_PKCS_PSS
• CKM_SHA384_RSA_PKCS_PSS
• CKM_SHA512_RSA_PKCS_PSS
• CKM_IBM_SM4_MAC_GENERAL
• CKM_IBM_SM4_MAC
• CKM_IBM_ISO2_SM4_MAC_GENERAL
• CKM_IBM_ISO2_SM4_MAC
• CKM_IBM_SM2
• CKM_IBM_SM2_SM3

Note: All SMx mechanisms require an active regional cryptographic
server.

58 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_Verify()

C_VerifyUpdate() Multiple-part verify is not supported for the CKM_RSA_PKCS and
CKM_RSA_X_509 mechanisms.

C_VerifyFinal() Multiple-part verify is not supported for the CKM_RSA_PKCS and
CKM_RSA_X_509 mechanisms.

Key management functions:

C_DeriveKey() The following mechanisms are supported:

• CKM_DH_PKCS_DERIVE
• CKM_SSL3_MASTER_KEY_DERIVE
• CKM_SSL3_MASTER_KEY_DERIVE_DH
• CKM_SSL3_KEY_AND_MAC_DERIVE
• CKM_TLS_MASTER_KEY_DERIVE
• CKM_TLS_MASTER_KEY_DERIVE_DH
• CKM_TLS_KEY_AND_MAC_DERIVE
• CKM_TLS_PRF (It is the caller’s responsibility to supply an ASCII

value for the seed)
• CKM_ECDH1_DERIVE
• CKM_IBM_SM4_ECB_ENCRYPT_DATA
• CKM_XOR_BASE_AND_DATA

Notes:

• A secure or clear key may be specified as the base key for
derivation mechanisms CKM_ECDH1_DERIVE and CKM_DH_PKCS.

• Key derivation mechanism CKM_DH_PKCS derive clear keys only.
• Key derivation mechanism CKM_ECDH1_DERIVE may derive clear

or secure keys (see Table 5 on page 26 for hardware requirements
to derive secure keys).

• Key derivation mechanisms CKM_ECDH1_DERIVE and
CKM_DH_PKCS derive clear keys only.

• For key derivation mechanisms CKM_XOR_BASE_AND_DATA and
CKM_IBM_SM4_ECB_ENCRYPT_DATA, a regional cryptographic
server SM4 key must be specified as the base key.

• Key derivation mechanisms CKM_XOR_BASE_AND_DATA and
CKM_IBM_SM4_ECB_ENCRYPT_DATA derive secure SM4 keys only.

• The derivation of SM4 keys requires key derivation mechanism
CKM_XOR_BASE_AND_DATA or
CKM_IBM_SM4_ECB_ENCRYPT_DATA.

• All SM4 mechanisms require an active regional cryptographic
server.

Chapter 2. The C API 59

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_GenerateKey() The following mechanisms are supported:

• CKM_DES_KEY_GEN
• CKM_DES2_KEY_GEN
• CKM_DES3_KEY_GEN
• CKM_PBE_SHA1_DES3_EDE_CBC
• CKM_AES_KEY_GEN
• CKM_DSA_PARAMETER_GEN
• CKM_DH_PKCS_PARAMETER_GEN
• CKM_BLOWFISH_KEY_GEN
• CKM_RC4_KEY_GEN
• CKM_GENERIC_SECRET_KEY_GEN
• CKM_SSL3_PRE_MASTER_KEY_GEN
• CKM_TLS_PRE_MASTER_KEY_GEN
• CKM_IBM_SM4_KEY_GEN

Notes:

• All SM4 mechanisms require an active regional cryptographic
server.

• CKM_IBM_SM4_KEY_GEN generates secure keys only.

C_GenerateKeyPair() The following mechanisms are supported:

• CKM_RSA_PKCS_KEY_PAIR_GEN
• CKM_DSA_KEY_PAIR_GEN
• CKM_DH_PKCS_KEY_PAIR_GEN
• CKM_EC_KEY_PAIR_GEN
• CKM_IBM_SM2_KEY_PAIR_GEN

Notes:

• All SMx mechanisms require an active regional cryptographic
server.

• SMx mechanisms generate secure keys only.

C_CreateObject Note: The creation of SMx keys requires an active regional
cryptographic server.

C_CopyObject Note: The creation of SMx keys requires an active regional
cryptographic server.

C_SetAttributeValue

60 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_WrapKey() The following mechanisms are supported for wrapping secret keys:

• CKM_RSA_PKCS
• CKM_DES_CBC_PAD
• CKM_DES3_CBC_PAD
• CKM_AES_CBC_PAD
• CKM_IBM_ATTRIBUTEBOUND_WRAP
• CKM_IBM_SM4_ECB
• CKM_IBM_SM2_ENCRYPT

The following mechanisms are supported for wrapping private keys:

• CKM_DES_CBC_PAD
• CKM_DES3_CBC_PAD
• CKM_AES_CBC_PAD
• CKM_IBM_ATTRIBUTEBOUND_WRAP

Clear keys may not be used to wrap secure keys and secure keys may
not be used to wrap clear keys. One exception: Clear RSA public keys
may be used to perform a non-attribute bound wrap of secure secret
keys.

Notes:

• All SMx mechanisms require an active regional cryptographic
server.

• Regional cryptographic server keys may only be wrapped by other
regional cryptographic server keys.

Chapter 2. The C API 61

Table 28. Standard PKCS #11 functions that ICSF supports (continued)

Function Usage notes

C_UnwrapKey() The following mechanisms are supported for unwrapping secret keys:

• CKM_RSA_PKCS
• CKM_DES_CBC_PAD
• CKM_DES3_CBC_PAD
• CKM_AES_CBC_PAD
• CKM_IBM_ATTRIBUTEBOUND_WRAP
• CKM_IBM_SM4_ECB
• CKM_IBM_SM2_ENCRYPT

The following mechanisms are supported for unwrapping private
keys:

• CKM_DES_CBC_PAD
• CKM_DES3_CBC_PAD
• CKM_AES_CBC_PAD
• CKM_IBM_ATTRIBUTEBOUND_WRAP

Notes:

• All SMx mechanisms require an active regional cryptographic
server.

• The key security of the unwrapping key determines the key security
of the unwrapped key.

Random number generation
functions:

C_SeedRandom() This function always returns the value
CKR_RANDOM_SEED_NOT_SUPPORTED because the z/OS hardware
random number generator is self-seeding.

C_GenerateRandom()

Non-standard functions supported
The following non-standard functions are also supported:

• CSN_FindALLObjects()

Because they are non-standard, they do not appear in the PKCS #11 CK_FUNCTION_LIST structure
returned by C_GetFunctionList(). To invoke these functions, the caller must either locate the desired
function in the main DLL using dlsym(), or link the application program with the main DLL’s sidedeck.
CSN_FindALLObjects()

CSN_FindALLObjects() is identical to C_FindObjects(), except that it uses the ALL rule array keyword
when invoking the ICSF CSFPTRL callable service. This can result in CSN_FindALLObjects() returning
handles to private objects even if the caller has insufficient SAF authority to view such objects.
CSN_FindALLObjects() returns a private key handle (and C_FindObjects does not) when the following
conditions are all met:

1. The private object matches the search criteria.
2. No sensitive attributes were specified in the search criteria. The sensitive values for this service

are:

• For a secret key object: CKA_VALUE

62 z/OS: z/OS ICSF Writing PKCS #11 Applications

• For Diffie Hellman, DSA, and Elliptic Curve private key objects: CKA_VALUE
• For an RSA private key object: CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,

CKA_EXPONENT_1, CKA_EXPONENT_2, CKA_COEFFICIENT
3. The caller has only Weak SO or SO R/W permission to the token.

Syntax of the CK_RV CSN_FindALLObjects() function:

CSN_FindALLObjects (
 CK_SESSION_HANDLE hSession,
 CK_OBJECT_HANDLE_PTR phObject,
 CK_ULONG ulMaxObjectCount
 CK_ULONG_PTR pulObjectCount
);

For more information about CSFPTRL processing with respect to the ALL rule array keyword, see z/OS
Cryptographic Services ICSF Application Programmer's Guide.

Non-standard mechanisms supported

CKM_IBM_ATTRIBUTEBOUND_WRAP
The CKM_IBM_ATTRIBUTEBOUND_WRAP function is for wrapping and unwrapping private and secret
keys in an IBM proprietary format, where the key’s boolean usage attributes are included with the key
material in the cryptogram. In addition to the format, the package is also signed, which means that the
unwrapping party must have the matching verifying key.

CKM_IBM_ATTRIBUTEBOUND_WRAP has the following restrictions:

• Only works with secure keys (CKA_IBM_SECURE=TRUE)
• All keys involved (target, wrapping/unwrapping, signature/verification) must be attribute bound keys

(CKA_IBM_ATTRBOUND=TRUE), otherwise

– For the target key on C_WrapKey, CKR_KEY_NOT_WRAPPABLE is returned.
– For the wrapping/unwrapping, signature/verification keys, CKR_KEY_FUNCTION_NOT_PERMITTED is

returned.
• An attribute template, if specified, may not contain key usage attributes. If such a template is specified,

CKR_TEMPLATE_INCONSISTENT is returned.
• On C_WrapKey, the signing private key must be capable of signing (CKA_SIGN=TRUE), otherwise

CKR_KEY_FUNCTION_NOT_PERMITTED is returned.
• On C_UnwrapKey, the verification public key must be capable of verifying (CKA_VERIFY=TRUE),

otherwise CKR_KEY_FUNCTION_NOT_PERMITTED is returned.

The CKM_IBM_ATTRIBUTEBOUND_WRAP function takes a parameter, used to specify the signature or
verification key handle.

Syntax of the CKM_IBM_ATTRIBUTEBOUND_WRAP function:

typedef struct CKM_IBM_ATTRIBUTEBOUND_WRAP {
 CK_OBJECT_HANDLE hSignVerifyKey;
}CK_IBM_ATTRBOUND_WRAP_PARAMS;

Note: If attribute bound wrapping is used to import a key, the resulting key object may have certain usage
attribute flags set FALSE even though they were set TRUE on the source key. This happens for the
following key types:

CKK_GENERIC_SECRET secret keys - CKA_ENCRYPT, CKA_DECRYPT, CKA_WRAP, and CKA_UNWRAP
will be set FALSE
CKK_DSA, CKK_EC, or CKK_DH private keys - CKA_SIGN_RECOVER, CKA_DECRYPT, and
CKA_UNWRAP will be set FALSE

This behavior, though inconsistent, does not cause a loss of function as these key types are not physically
capable of performing the negated operations.

Chapter 2. The C API 63

CKM_IBM_SMx mechanisms
ICSF provides PKCS #11 extensions or mechanisms to be used with regional cryptographic servers. For
additional information, see “Regional cryptographic server key types and mechanisms supported” on
page 77.

Enterprise PKCS #11 coprocessors

Key algorithms/usages that are unsupported or disallowed by the Enterprise
PKCS #11 coprocessors

The following table lists the key algorithms/usages that are not supported by the Enterprise PKCS #11
coprocessors or disallowed due to FIPS restrictions that are always enforced. The results of requesting an
unsupported algorithm depend on what is being requested. All these results assume the system is
properly configured to use secure PKCS #11. Improper configuration would result in different errors:

1. Key generation or creation – Explicitly requesting the generation or creation of an unsupported/
disallowed secure key type results in CKR_TEMPLATE_INCONSISTENT being returned.

2. Key derivation – Explicitly requesting the derivation of a secure key using a clear base key results
CKR_TEMPLATE_INCONSISTENT being returned. Attempting key derivation using a secure base key
results in CKR_IBM_CLEAR_KEY_REQ being returned.

3. Standard unwrap key – The target key always has the security of the unwrapping key. Specifying the
CKA_IBM_SECURE attribute in the unwrap template results in CKR_ATTRIBUTE_READ_ONLY being
returned. Requesting the unwrapping of an unsupported/disallowed key type using a secure
unwrapping key results in CKR_IBM_CLEAR_KEY_REQ being returned.

4. Otherwise, requesting an unsupported/disallowed algorithm using a secure key results in
CKR_IBM_CLEAR_KEY_REQ being returned.

Table 29. List of algorithms/uses not supported/disallowed by Enterprise PKCS #11 coprocessors

Algorithm PKCS #11 Mechanisms or key types Comments

MD2 CKM_MD2_RSA_PKCS Secure private key use for signing disallowed

MD5 CKM_MD5_RSA_PKCS,
CKM_MD5_HMAC

Secure private or secret key use for signing
disallowed

SSL3 CKM_SSL3_MD5_MAC,
CKM_SSL3_SHA1_MAC,
CKM_SSL3_MASTER_KEY_DERIVE,
CKM_SSL3_MASTER_KEY_DERIVE_DH,
CKM_SSL3_KEY_AND_MAC_DERIVE

TLS CKM_TLS_MASTER_KEY_DERIVE,
CKM_TLS_MASTER_KEY_DERIVE_DH,
CKM_TLS_KEY_AND_MAC_DERIVE

Diffie
Hellman

CKK_DH keys Prime size less than 1024 bits

DSA CKK_DSA keys Combinations other than the following are not
supported:

• Prime size = 1024 bits, subprime size = 160 bits
• Prime size = 2048 bits, subprime size = 224 bits

or 256 bits

Single DES CKK_DES keys

Triple DES CKK_DES2 keys

64 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 29. List of algorithms/uses not supported/disallowed by Enterprise PKCS #11 coprocessors (continued)

Algorithm PKCS #11 Mechanisms or key types Comments

Blowfish CKK_BLOWFISH keys

RC4 CKK_RC4 keys

RSA CKK_RSA

CKM_RSA_PKCS_KEY_PAIR_GEN

CKM_RSA_X_509

Key sizes less than 1024 bits

Key sizes that are less than 1024 bits or not
a multiple of 256 bits or public key
exponents less than 0x010001

Secure private key use for signing/decryption
disallowed

HMAC CKK_GENERIC_SECRET

CKM_SHA_1_HMAC,
CKM_SHA224_HMAC,
CKM_SHA256_HMAC,
CKM_SHA384_HMAC,
CKM_SHA512_HMAC

Key sizes less than 10 bytes

Base key sizes less than ½ the output size
are not supported.

AES GCM CKM_AES_GCM

PKCS #11 Coprocessor Access Control Points
The following table lists the Access Control Points that are available on the Enterprise PKCS #11
coprocessors and the PKCS #11 mechanisms or functions that would be disabled for secure keys if the
control point is deactivated. A new or a zeroized Enterprise PKCS #11 coprocessor (or domain) comes
with an initial set of Access Control Points (ACPs) that are enabled by default. All other ACPs, representing
potential future support, are left disabled. When a firmware upgrade is applied to an existing Enterprise
PKCS #11 coprocessor , the upgrade might introduce new ACPs. The firmware upgrade does not
retroactively enable these ACPs, so they are disabled by default. These ACPs must be enabled with the
TKE (or subsequent zeroize) to use the new support they govern.

See the Enabling Access Control Points for PKCS #11 coprocessor firmware section in the Migration topic
of the z/OS Cryptographic Services ICSF System Programmer's Guide for the list of default ACPs and those
ACPs that need to be enabled with the TKE for PKCS #11 coprocessor firmware upgrades.

The following table lists the Access Control Points that are available on the Enterprise PKCS #11
coprocessors and the PKCS #11 mechanisms or functions that would be disabled for secure keys if the
control point is deactivated.

Table 30. PKCS #11 Access Control Points

Access Control Point name or group Mechanism/Function requiring enablement Number

Control Point Management

Allow addition (activation) of Control Points Not applicable 0

Allow removal (deactivation) of Control
Points

Not applicable 1

Cryptographic Operations

Sign with private keys Sign using CKK_RSA, CKK_DSA, of CKK_ECDSA
keys.

2

Chapter 2. The C API 65

Table 30. PKCS #11 Access Control Points (continued)

Access Control Point name or group Mechanism/Function requiring enablement Number

Sign with HMAC or CMAC Sign using CKM_SHA_1_HMAC,
CKM_SHA224_HMAC,
CKM_SHA256_HMAC,
CKM_SHA384_HMAC, or
CKM_SHA512_HMAC.

3

Verify with HMAC or CMAC Verify using CKM_SHA_1_HMAC,
CKM_SHA224_HMAC,
CKM_SHA256_HMAC,
CKM_SHA384_HMAC, or
CKM_SHA512_HMAC.

4

Encrypt with symmetric keys Encrypt with CKK_DES3 of CKK_AES
keys.

Create Object or Copy Object where
source is a clear key.

5

Decrypt with private keys Decrypt with CKK_RSA keys. 6

Decrypt with symmetric keys Decrypt with CKK_DES3 of CKK_AES keys. 7

Key export with public keys Wrap Key using a CKK_RSA wrapping key. 8

Key export with symmetric keys Wrap Key using a CKK_DES3 or CKK_AES wrapping
key.

9

Key import with private keys Unwrap Key using a CKK_RSA unwrapping key. 10

Key import with symmetric keys Unwrap Key using a CKK_DES3 or
CKK_AES unwrapping key.

Create Object or Copy Object where
source is a clear key.

11

Generate asymmetric key pairs Generate Key Pair for CKK_RSA, CKK_DSA, or
CKK_ECDSA keys.

12

Generate symmetric keys Generate key for CKK_DES2 or CKK_AES keys. 13

Allow key derivation Derive key using a CKK_DH key. 47

Allow protected keys Encrypt/Decrypt using CKK_AES or CKK_DES keys.
Sign using CKK_EC private keys.

64

Cryptographic Algorithms

RSA private-key use Generate Key Pair for CKK_RSA
Sign or Decrypt using a CKK_RSA key

30

DSA private-key use Generate Key Pair for CKK_DSA
Sign using a CKK_DSA key

31

EC private-key use Generate Key Pair for CKK_EC
Sign or Derive Key using a CKK_EC key

32

66 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 30. PKCS #11 Access Control Points (continued)

Access Control Point name or group Mechanism/Function requiring enablement Number

DH private-key use Generate Key Pair for CKK_DH 46

Brainpool (E.U.) EC curves Sign or Verify using the Brainpool curves 33

NIST/SECG EC curves Sign or Verify using the NIST EC curves 34

Allow non-BSI algorithms (as of 2009) Not applicable 21

Allow non-FIPS-approved algorithms (as of
2011)

Not applicable 35

Allow non-BSI algorithms (as of 2011) Not applicable 36

Allow non-BSI algorithms (as of 2017) Not applicable 61

Allow using 25519, c41417, and c448
curves

Sign or verify using 25519 and c448 curves. 55

Dilithium key use Generate Dilithium key pair (CSFPGKP). 65

BTC-related including blockchain, altcoins,
and digital assets

Not applicable 42

Key Size

Allow 80 to 111-bit algorithms Any use of CKK_GENERIC_SECRET keys smaller
than 112 bits, or 160 or 192 bit CKK_ECDSA keys
If in a BSI mode:

Any use of CKK_DSA keys, or CKK_RSA keys
smaller than 2432 bits

If not in a BSI mode:
Any use of CKK_DSA, or CKK_RSA keys smaller
than 2048 bits

24

Allow 112 to 127-bit algorithms Any use of 2048 bit CKK_DSA keys,
CKK_GENERIC_SECRET keys larger than 111 bits
but less than 128 bits, 224 bit CKK_ECDSA keys, or
CKK_DES3 keys
If in a BSI mode:

Any use of CKK_RSA keys larger that 2431 bits
but less than 3248 bits

If not in a BSI mode:
Any use of CKK_RSA keys larger that 2047 bits
but less than 3072 bits

25

Allow 128 to 191-bit algorithms Any use of CKK_GENERIC_SECRET keys larger than
127 bits but less than 192 bits, 128 bit CKK_AES
keys, or 256 bit CKK_ECDSA keys
If in a BSI mode:

Any use of CKK_RSA keys larger that 3247 bits
If not in a BSI mode:

Any use of CKK_RSA keys larger that 3071 bits

26

Allow 192 to 255-bit algorithms Any use of CKK_GENERIC_SECRET keys larger than
191 bits, 192 bit CKK_AES keys or 384 bit
CKK_ECDSA keys.

27

Chapter 2. The C API 67

Table 30. PKCS #11 Access Control Points (continued)

Access Control Point name or group Mechanism/Function requiring enablement Number

Allow 256-bit algorithms Any coprocessor use other than random number
generation.

28

Allow RSA public exponents below
0x10001

Generate Key or Generate Key Pair for CKK_RSA
where the exponent is 3.

29

Miscellaneous

Allow backend to save semi-retained keys Not applicable 14

Allow keywrap without attribute-binding Wrap Key or Unwrap Key using CKM_RSA_PKCS,
CKM_AES_CBC_PAD, or CKM_DES3_CBC_PAD

Create Object or Copy Object where source is a
clear key.

16

Allow changes to key objects (usage flags
only)

Set Attribute Value or Copy Object where the key
usage flags are modified

17

Allow mixing external seed to RNG Not applicable 18

Allow non-administrators to mark key
objects TRUSTED

Set Attribute Value where CKA_TRUSTED is set
TRUE

37

Do not double-check sign/decrypt
operations

Not applicable 38

Allow dual-function keys - key
wrapping and data encryption

Generate Key or Generate Key Pair where
CKA_WRAP / CKA_UNWRAP and CKA_ENCRYPT /
CKA_DECRYPT combinations are requested (or
defaulted)

Wrap Key, Unwrap Key, Encrypt or Decrypt with a
previously created key containing the previous
combination.

Create Object or Copy Object where source is a
clear key.

39

Allow dual-function keys - digital signature
and data encryption

Create Object, Generate Key or Generate Key Pair
where CKA_SIGN / CKA_VERIFY and
CKA_ENCRYPT / CKA_DECRYPT combinations are
requested (or defaulted)

Sign, Verify, Encrypt or Decrypt with a previously
created key containing the previous combination

40

Allow dual-function keys - key wrapping
and digital signature

Create Object, Generate Key or Generate Key Pair
where CKA_SIGN / CKA_VERIFY and CKA_WRAP /
CKA_UNWRAP combinations are requested (or
defaulted)

Sign, Verify, Wrap Key or Unwrap Key with a
previously created key containing the previous
combination

41

Allow non-administrators to mark public
key objects ATTRBOUND

Create Object where CKA_IBM_ATTRBOUND is set
TRUE

42

Allow clear passphrases for password-
based-encryption

Generate Key using
CKM_PBE_SHA1_DES3_EDE_CBC

43

68 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 30. PKCS #11 Access Control Points (continued)

Access Control Point name or group Mechanism/Function requiring enablement Number

Allow wrapping of stronger keys by weaker
keys

Wrap Key where the to-be-wrapped key is stronger
than the wrapping key.

44

Allow clear public keys as non-attribute
bound wrapping keys

Wrap Key where the wrapping key is an CKK_RSA
clear public key and the to-be-wrapped key is a
secure CKK_DES3, CKK_AES, or
CKK_GENERIC_SECRET key.

45

Standard compliance modes
Enterprise PKCS #11 coprocessors are designed to always operate in a FIPS compliant fashion. The
optional compliance modes that a given domain can be in correspond to FIPS modes based on FIPS
140-2 requirements as of 2009 and 2011, and BSI modes based on the BSI HSM protection profile and
German Bundesnetzagentur algorithms as of 2009, 2011, and 2017.

These compliance modes are not mutually exclusive and are set ON by disabling certain access control
points:

1. FIPS 2009 – Card adheres to FIPS restrictions that went into effect in 2009 – equivalent to ICSF’s
FIPS140 mode. This is the default mode. A domain cannot be set to be less restrictive than this mode.
This mode has the following policy/restrictions:

a. Algorithms and keys below 80-bit of strength are not permitted.
b. RSA private-keys may not be use without padding.
c. Newly generated asymmetric keys always undergo selftests.
d. The minimum keysize on HMAC is 1/2 the algorithm's output size.
e. Only FIPS-approved algorithms (as of 2009) are present.

2. FIPS 2011 – Card adheres to FIPS restrictions that went into effect in 2011. (More restrictive than
FIPS 2009.) The following access control points would need to be disabled:

a. Allow 80 to 111-bit algorithms.
b. Allow non-FIPS-approved algorithms (as of 2011).
c. Allow RSA public exponents below 0x10001.

3. BSI 2009 – Card adheres to BSI restrictions that went into effect in 2009. The following access control
points would need to be disabled:

a. Allow keywrap without attribute-binding.
b. Allow non-BSI-approved algorithms (as of 2009).

4. BSI 2011 – Card adheres to BSI restrictions that went into effect in 2011. (More restrictive than BSI
2009.) The following access control points would need to be disabled:

a. Allow keywrap without attribute-binding.
b. Allow 80 to 111-bit algorithms.
c. Allow non-BSI-approved algorithms (as of 2011).

5. BSI/CC 2017 – Card adheres to the CP settings evaluated for Common Criteria Certification by
German Bundesnetzagentur. The following access control points would need to be disabled:

a. Allow key wrap without attribute-bindings.
b. Allow mixing external seed to RNG.
c. Allow RSA public exponents below 0x10001.
d. Allow non-administrators to mark key objects TRUSTED.
e. Allow dual-function keys - key wrapping and data encryption.

Chapter 2. The C API 69

f. Allow dual-function keys - digital signature and data encryption.
g. Allow dual-function keys - key wrapping and digital signature.
h. Allow non-administrators to mark public key objects ATTRBOUND.
i. Allow clear passphrases for password-based-encryption.
j. Allow wrapping of stronger keys by weaker keys using BSI equivalent key lengths documented in

BSI TR-02102-1.
k. Allow clear public keys as non-attribute bound wrapping keys.

Whenever a secure key is created, the current compliance mode of the Enterprise PKCS #11 coprocessor
is recorded inside the secure key. If the compliance mode of the coprocessor is subsequently changed, all
previously created secure keys become unusable until their compliance modes are updated. See “Steps
for running the pre-compiled version of testpkcs11” on page 73 for information on how to modify the
compliance mode of a secure key using a sample program distributed by IBM. The compliance mode of a
key may also be updated by using the PKCS #11 Token Browser ISPF panels. For more information on
these panels, see z/OS Cryptographic Services ICSF Administrator's Guide.

Function return codes
In general, the PKCS #11 function return codes are defined in the PKCS #11 specification. However, the
following function return codes have a meaning specific to z/OS:
CKR_TOKEN_NOT_PRESENT

ICSF is not running or the TKDS is not properly configured. Note that this return code has no
relationship to the slot flag CKF_TOKEN_PRESENT.

CKR_TOKEN_NOT_RECOGNIZED
The caller is not authorized to perform the action requested.

CKR_MECHANISM_INVALID
The specified mechanism is either unknown or not supported by the current cryptographic hardware
configuration.

CKR_DEVICE_REMOVED
The token no longer exists. When this error is detected, the token flags are cleared indicating that the
token is no longer initialized. It can be re-initialized as a new token, if desired.

Other ICSF-related errors are returned as vendor-defined error codes (CKR_VENDOR_DEFINED). The
ICSF return and reason codes are combined into the single return code as follows:

#define CKR_IBM_ICSF_ERROR 0xC0000000 /* High order byte mask indicating ICSF error
*/
#define CKR_IBM_ICSF_ERROR_RET 0x00FF0000 /* Second byte is the return code */
#define CKR_IBM_ICSF_ERROR_RSN 0x0000FFFF /* low order half word is reason code */

This mapping is also used to store the ICSF return and reason code values in the CK_SESSION_INFO
ulDeviceError field.

The following constants are defined for select ICSF return reason codes:

/* ICSF not configured for FIPS mode OR system does not
support FIPS mode */
#define CKR_IBM_ICSF_NOT_FIPS_MODE 0xC0080BFD

/* Algorithm or key size is not valid in FIPS mode */
#define CKR_IBM_ICSF_NOT_VALID_FIPS 0xC0080BFE

/* FIPS known answer tests failed */
#define CKR_IBM_ICSF_FIPS_KAT_FAILED 0xC00C8D3C

/* Service or algorithm not available on current system */
#define CKR_IBM_ICSF_SERV_NOTAVAIL 0xC00C0008

/* A clear key is required for this operation, but a secure
key was supplied */
#define CKR_IBM_CLEAR_KEY_REQ 0xC0080C81

70 z/OS: z/OS ICSF Writing PKCS #11 Applications

/* Clear key creation denied by policy */
#define CKR_IBM_DENIED_BY_POLICY 0xC0083E88

/* Key object in more restrictive compliance mode than
current setting of the Enterprise PKCS #11 coprocessors */
#define CKR_IBM_KEY_MODE_ERROR 0xC00C3200

Troubleshooting PKCS #11 applications
Note: The information and techniques described in this topic are for use primarily by IBM service
personnel in determining the cause of a problem with the ICSF PKCS #11 C API.

You can capture trace data using environment variables. To do this, the trace environment variables
CSN_PKCS11_TRACE and CSN_PKCS11_TRACE_FILE must be exported prior to the application’s first call
to any of the PKCS #11 functions.

Table 31. Environment variables for capturing trace data

Environment variable Usage Valid values

CSN_PKCS11_TRACE Specifies the level of tracing to
be performed.

An integer value, 1-7. The higher
the value, the greater the number
of conditions traced. Each level
includes the conditions of the
levels below it:
7

Debug information
6

Informational conditions
5

Normal but significant
conditions

4
Warning conditions

3
Error conditions

2
Critical conditions

1
Immediate action required

Any other value causes tracing to
be inactive (the default).

Chapter 2. The C API 71

Table 31. Environment variables for capturing trace data (continued)

Environment variable Usage Valid values

CSN_PKCS11_TRACE_FILE Specifies the name of the trace
file. Defaults to /tmp/
csnpkcs11.%.trc.

The current process identifier is
included as part of the trace file
name when the name contains a
percent sign (%). For example, if
CSN_PKCS11_TRACE_FILE is set
to:

/tmp/csnpkcs11.%.trc

and the current process identifier
is 247, the trace file name is

/tmp/csnpkcs11.247.trc

Must be set to the full path name
of an HFS file in a directory for
which the executing application
has write permission. The
maximum length for the path
name is 255 bytes. Values longer
than 255 bytes are truncated.

You can also use the utility program, testpkcs11, for troubleshooting. For information about running
testpkcs11, see “Running the pre-compiled version of testpkcs11” on page 73.

72 z/OS: z/OS ICSF Writing PKCS #11 Applications

Chapter 3. Sample PKCS #11 C programs

IBM provides sample PKCS #11 C programs. The source code for the sample programs is provided
in /usr/lpp/pkcs11/samples/. See “Building sample PKCS #11 applications from source code” on page
74 for instructions on how to build and run a sample program.

• Sample testpkcs11: This program is passed the name of a PKCS #11 token, and performs the following
tasks:

1. Creates a token that has the name passed
2. Generates an RSA key-pair
3. Encrypts some test data using the public part of the key-pair
4. Decrypts the data using the private part of the key-pair
5. Deletes the key-pair and the token

You can use this program in several ways:

As a utility program to test the system configuration for PKCS #11 and troubleshoot problems.
As a sample application to learn how to build and run a PKCS #11 application.

IBM provides a pre-compiled version of this program installed in /usr/lpp/pkcs11/bin. For the
source code for this program, see Appendix B, “Source code for the testpkcs11 sample program,” on
page 93.

• Sample updatecomp: This sample program uses the C API for updating the FIPS/BSI compliance mode
of all keys in a token. With this program, users can update all the keys in a token to the current
compliance mode of the Enterprise PKCS # 11 coprocessor or to some other mode. Users will find this
program a useful aid when changing the FIPS/BSI compliance mode of an Enterprise PKCS #11
coprocessor where increasing the coprocessor compliance mode makes all existing Secure PKCS #11
keys unusable. This program creates a backup copy of each key (under the same token) before updating
its compliance mode. The label of the copy will indicate the sequence number of the original key. The
copied keys act as a backup, allowing one to revert to the previous compliance mode, if necessary.
Users can examine the backup and updated keys via the PKCS #11 Token Browser ISPF panels. See
“Standard compliance modes” on page 69 for more information.

– Usage: updatecomp { -t token-name [-c comp-mode] | -h }

-t token-name = The name of the token to be updated.
-c comp-mode = The numeric value (0-15) to use as the new compliance mode. Optional, ICSF will
reset to the current mode of the coprocessor if not specified.
-h = Displays this help.

– IBM recommends that you use updatecomp only to reset your keys to match the compliance mode
of the coprocessor. This can be accomplished by specifying -c 0 or letting the -c switch default to 0.
Use caution when specifying a non-zero compliance mode via the -c switch. Specifying a value that
does not match the coprocessor could disable use of the keys permanently.

Running the pre-compiled version of testpkcs11
If you are testing the system configuration for PKCS #11, or troubleshooting problems with the
configuration, you can run the pre-compiled version of testpkcs11.

Steps for running the pre-compiled version of testpkcs11

About this task
Before you begin: You need to know how to use z/OS UNIX shells.

© Copyright IBM Corp. 2007, 2021 73

Perform the following steps to run the pre-compiled version of testpkcs11.

Procedure
1. Change to the PKCS #11 bin directory by entering the following command:

cd /usr/lpp/pkcs11/bin

__
2. Choose a temporary token name to use. If you need to review the rules for token names, see “Tokens”

on page 1.

__
3. Run testpkcs11, passing it your token name on the -t option. For example, to use a temporary token

name of my.temp.token, enter the following command:

./testpkcs11 -t my.temp.token

Results
If z/OS PKCS #11 has been set up properly and the you have sufficient authority to the token label
specified, you should see the following output:

Getting the PKCS11 function list...
Initializing the PKCS11 environment...
Creating the temporary token...
Opening a session...
Generating keys. This may take a while...
Enciphering data...
Deciphering data...
Destroying keys...
Closing the session...
Deleting the temporary token...
Test completed successfully!

If you see different messages, there is an error in either your PKCS #11 set up or in the token label that
you specified.

The most common user error is specifying token label that is unacceptable to ICSF or already in use. In
that case the following is displayed:

Getting the PKCS11 function list...
Initializing the PKCS11 environment...
Creating the temporary token...
 C_InitToken #1 returned 7 (0x07) CKR_ARGUMENTS_BAD
 Make sure your the token name you specified meets ICSF rules:
 Contains only alphanumeric characters, nationals (@#$), and periods.
 The first character cannot be a numeric or a period.

If you see other error messages, there is probably an error in the setup for the PKCS #11 environment.
Determine the error represented by the PKCS #11 error code returned. For information about error codes,
see “Function return codes” on page 70.

To display the help text for the testpkcs11 program, run the program with the -h option:

cd /usr/lpp/pkcs11/bin
./testpkcs11 -h

Building sample PKCS #11 applications from source code
If you are learning how to build and run a PKCS #11 application, you can use the source code for
testpkcs11 to build and run a sample application.

Before you begin: You need to know in which directory the PKCS #11 header file is located. By default it
is located in the standard include subdirectory under /usr. If your standard include subdirectory it in a

74 z/OS: z/OS ICSF Writing PKCS #11 Applications

different location, you will need to modify the Makefile in step 2. You also need to know how to use z/OS
UNIX shells.

Makefiles for sample programs: Makefiles for 31, 64, and 31 XPLINK addressing for the sample
programs are provided in /usr/lpp/pkcs11/samples. The naming convention of the makefiles are:

Makefile.samplepgmname,
Makefile64.samplepgmname, and
Makefile3X.samplepgmname

where samplepgmname is the name of the sample C program.

Example: Perform the following steps to build the sample application, testpkcs11. (Other samples would
be built in a similar fashion.) Issue the commands from the z/OS UNIX command shell.

1. Copy the testpkcs11.c program and appropriate Makefile to the current directory. For example, for 64-
bit addressing enter the following commands:

cp /usr/lpp/pkcs11/samples/testpkcs11.c testpkcs11.c
cp /usr/lpp/pkcs11/samples/Makefile64.testpkcs11 Makefile

__
2. If the standard include subdirectory is not located under /usr, edit the Makefile copied in step 1 and

change the PKCS11_INSTALL_DIR variable as required.

__
3. Enter the following command to compile and link and produce the executable, testpkcs11:

make

__
4. Update your C/C++ environment variable _CEE_RUNOPTS to include XPLINK(ON) if it does not already

include it. For example, execute the following command from a UNIX shell:

export _CEE_RUNOPTS=$_CEE_RUNOPTS' XPLINK(ON)'

__

When you are done, you have built the testpkcs1164 application and can run it in your directory. For
example, to run testpkcs1164 in your directory and display its help text, enter the following command:

./testpkcs1164 -h

To run a test, choose a temporary token name and enter it with the -t option. If you need to review the
rules for token names, see “Tokens” on page 1. For example, to use a temporary token name of
my.temp.token, enter the following command:

./testpkcs1164 -t my.temp.token

For the output that should appear, see “Steps for running the pre-compiled version of testpkcs11” on
page 73.

Chapter 3. Sample PKCS #11 C programs 75

76 z/OS: z/OS ICSF Writing PKCS #11 Applications

Chapter 4. Regional cryptographic servers

ICSF provides PKCS #11 extensions or mechanisms to be used with regional cryptographic servers.

Regional cryptographic server key types and mechanisms
supported

For generation 3 regional cryptographic servers and later, the following international standard
mechanisms and key types are supported:

• AES
• RSA
• TDES
• ECC

For all the key types (CKK_*)
To use the key object with a regional cryptographic server, the attribute CKA_IBM_REGIONAL
(CK_BBOOL) is required, must be TRUE, and is bound to the key, just as it is required for CKK_SM2
and CKK_SM4 key objects.

For CKK_AES
The following mechanisms are supported:

• CKM_AES_KEY_GEN
• CKM_AES_ECB
• CKM_AES_CBC
• CKM_AES_CBC_PAD

For CKK_RSA
The following mechanisms are supported:

• CKM_RSA_PKCS_KEY_PAIR_GEN
• CKM_RSA_PKCS
• CKM_RSA_X_509
• CKM_SHA1_RSA_PKCS
• CKM_SHA224_RSA_PKCS
• CKM_SHA256_RSA_PKCS
• CKM_SHA384_RSA_PKCS
• CKM_SHA512_RSA_PKCS
• CKM_RSA_PKCS_PSS
• CKM_SHA1_RSA_PKCS_PSS
• CKM_SHA224_RSA_PKCS_PSS
• CKM_SHA256_RSA_PKCS_PSS
• CKM_SHA384_RSA_PKCS_PSS
• CKM_SHA512_RSA_PKCS_PSS

For CKK_DES3
The following mechanisms are supported:

• CKM_DES3_KEY_GEN
• CKM_DES3_ECB

© Copyright IBM Corp. 2007, 2021 77

• CKM_DES3_CBC
• CKM_DES3_CBC_PAD

For CKK_EC
The following mechanisms are supported:

• CKM_EC_KEY_PAIR_GEN
• CKM_ECDSA

The CKK_IBM_SM2 and CKK_IBM_SM4 key types are defined for the type CK_KEY_TYPE as used in the
CKA_KEY_TYPE attribute of key objects. All SMx mechanisms require an active regional cryptographic
server. The SMx specific vendor-defined mechanisms are:

• “CKM_IBM_SM2” on page 79
• “CKM_IBM_SM2_ENCRYPT” on page 79
• “CKM_IBM_SM2_KEY_PAIR_GEN” on page 80
• “CKM_IBM_SM2_SM3” on page 80
• “CKM_IBM_SM3” on page 81
• “CKM_IBM_SM4_CBC” on page 81
• “CKM_IBM_SM4_ECB” on page 81
• “CKM_IBM_SM4_ECB_ENCRYPT_DATA” on page 82
• “CKM_IBM_SM4_ISO2_MAC” on page 82
• “CKM_IBM_SM4_ISO2_MAC_GENERAL” on page 83
• “CKM_IBM_SM4_KEY_GEN” on page 83
• “CKM_IBM_SM4_MAC” on page 83
• “CKM_IBM_SM4_MAC_GENERAL” on page 84

The standard mechanism CKM_XOR_BASE_AND_DATA is also supported for SM4 key derivation. For
additional details, see “CKM_XOR_BASE_AND_DATA” on page 84.

Table 32 on page 78 shows the regional cryptographic server mechanisms that are supported and their
functions:

Table 32. Regional cryptographic server mechanisms and functions

Mechanism

Encrypt
and

decrypt
Sign and

verify
SR and

VR Digest

Generate
key or

key pair
Wrap and

unwrap Derive

CKM_IBM_SM2_KEY_PAIR
_GEN

N/A N/A N/A N/A X N/A N/A

CKM_IBM_SM2 N/A X N/A N/A N/A N/A N/A

CKM_IBM_SM2_SM3 N/A X N/A X N/A N/A N/A

CKM_IBM_SM2_ENCRYPT N/A N/A N/A N/A N/A X N/A

CKM_IBM_SM3 N/A N/A N/A X N/A N/A N/A

CKM_IBM_SM4_KEY_GEN N/A N/A N/A N/A X N/A N/A

CKM_IBM_SM4_ECB X N/A N/A N/A N/A X N/A

CKM_IBM_SM4_CBC X N/A N/A N/A N/A N/A N/A

CKM_IBM_SM4_MAC
_GENERAL

N/A X N/A N/A N/A N/A N/A

78 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 32. Regional cryptographic server mechanisms and functions (continued)

Mechanism

Encrypt
and

decrypt
Sign and

verify
SR and

VR Digest

Generate
key or

key pair
Wrap and

unwrap Derive

CKM_IBM_SM4_MAC N/A X N/A N/A N/A N/A N/A

CKM_IBM_ISO2_SM4_MAC
_GENERAL

N/A X N/A N/A N/A N/A N/A

CKM_IBM_ISO2_SM4_MAC N/A X N/A N/A N/A N/A N/A

CKM_IBM_SM4_ECB
_ENCRYPT_DATA

N/A N/A N/A N/A N/A N/A X

CKM_XOR_BASE_AND_DATA N/A N/A N/A N/A N/A N/A X

CKM_IBM_SM2
CKM_IBM_SM2 is a mechanism for single-part signatures and verification for SM2. CKM_IBM_SM2 does
not have a parameter, but generates 64-byte signatures.

CKM_IBM_SM2 corresponds only to the part of SM2 that processes the final hash value, which is the 256-
bit SM3 hash of ZA || Message; it does not compute the hash value.

The application must produce the 256-bit SM3 hash to be used as the input data for this mechanism. To
do so, complete the following the steps:

• Set IDA equal to the user ID of the signer.
• Set ENTLA equal to the two-byte binary bit length of IDA.
• Set ZA=HASHSM3(ENTLA || IDA || a || b || XG || YG || XA || YA), where a, b, XG, and YG are the curve

parameters and XA and YA are the signer’s public key point coordinates.

Calculate HASHSM3(ZA || Message). This is the input data for CKM_IBM_SM2.

Constraints on key types and the length of data are summarized in Table 33 on page 79:

Table 33. CKM_IBM_SM2: Key and data length

Function Key type Data length Signature length

C_Sign SM2 private key 32 bytes 64 bytes

C_Verify SM2 public key 32 bytes, 64 bytes N/A

For CKM_IBM_SM2, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO structure are
not used.

CKM_IBM_SM2_ENCRYPT
CKM_IBM_SM2_ENCRYPT is a public key encryption mechanism that utilizes SM2 for key wrapping and
key unwrapping. CKM_IBM_SM2_ENCRYPT does not have a parameter, but can wrap and unwrap SM4
keys.

For key wrapping, CKM_IBM_SM2_ENCRYPT encrypts the value of the CKA_VALUE attribute of the key
that is to be wrapped. It does not wrap the key type, key length, or any other information about the key.
Your application must supply this information separately.

Let K equal the value of the SM4 key to be wrapped. The mechanism generates an ephemeral SM2 key-
pair (x1, y1). This key-pair is then used to perform an EC-DH key agreement with the recipient’s public key.

Chapter 4. Regional cryptographic servers 79

The resulting shared secret EC point (x2, y2) is then used as input to the following key derivation function
(KDF):

t = HASHSM3(x2 || y2 || 0x00000001)

The left-most 16 bytes of t are XORed with K to produce the enciphered key. Finally, an authentication tag
is produced as follows:

tag = HASHSM3(x2 || K || y2)

The output ciphertext is the following concatenation:

Ciphertext = 0x04 || x1 || y1 || enciphered key || tag

For key unwrapping, CKM_IBM_SM2_ENCRYPT decrypts the wrapped key. Attributes required by the key
type must be specified in the template.

The ephemeral key is extracted from the ciphertext and used to perform the equivalent EC-DH key
agreement with the recipient’s private key, producing shared secret EC point (x2, y2). This is input to the
same KDF producing t. The left-most 16 bytes of t are XORed with the enciphered key to recover K. Finally,
the authentication tag is verified by checking to see if it matches tag = HASHSM3(x2 || K || y2), If the tags do
not match, the unwrapping fails and returns CKR_WRAPPED_KEY_INVALID.

Constraints on key types and the length of input and output data are summarized in Table 34 on page
80. In the table, k is the length in bytes of the to-be-wrapped key’s CKA_VALUE attribute. Because this is
limited to SM4 keys only, k = 16.

Table 34. CKM_IBM_SM2_ENCRYPT: Key and input length

Function Key type Input length Output length

C_WrapKey SM2 private key k 65 + k + 2

C_UnwrapKey SM2 public key 65 + k + 32 k

For CKM_IBM_SM2_ENCRYPT, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM2_KEY_PAIR_GEN
CKM_IBM_SM2_KEY_PAIR_GEN is a key pair generation mechanism for SM2.
CKM_IBM_SM2_KEY_PAIR_GEN does not have a parameter, but generates SM2 public and private key
pairs with the EC parameters defined for SM2 curve GB-256.

CKM_IBM_SM2_KEY_PAIR_GEN adds the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS, and
CKA_EC_POINT attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_EC_PARAMS,
and CKA_VALUE attributes to the new private key. Other attributes supported by the SM2 key type
(specifically, the flags indicating the functions that the key supports) may be specified in the template for
the key or are assigned default initial values.

For CKM_IBM_SM2_KEY_PAIR_GEN, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure are not used.

CKM_IBM_SM2_SM3
CKM_IBM_SM2_SM3 is a single-part and multi-part signature generation and verification mechanism for
SM2 that includes hashing with mechanism SM3. CKM_IBM_SM2_SM3 has a user ID (IDA) parameter
which has a maximum of 256 bytes. The mechanism generates 64-byte signatures.

Constraints on key types and the length of input and signature data are summarized in Table 35 on page
81.

80 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 35. CKM_IBM_SM2_SM3: Key and input length

Function Key type Input length Signature length

C_Sign SM2 private key Any 64 bytes

C_Verify SM2 public key Any, 642 N/A

2 Data length, signature length.

For CKM_IBM_SM2_SM3, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM3
CKM_IBM_SM3 is a message digest mechanism. CKM_IBM_SM3 does not have a parameter, but
generates 32-byte message digests.

Constraints on the length of digest data are summarized in Table 36 on page 81.

Table 36. CKM_IBM_SM3: Data and digest length

Function Data length Digest length

C_Digest Any 32 bytes

CKM_IBM_SM4_CBC
CKM_IBM_SM4_CBC is a mechanism for single-part encryption and decryption based on the Chinese
national algorithm SM4 and cipher-block chaining mode. CKM_IBM_SM4_CBC has a 16-byte initialization
vector parameter.

Constraints on key types and the length of data are summarized in Table 37 on page 81:

Table 37. CKM_IBM_SM4_CBC: Key and data length

Function Key type Input length Output length Comments

C_Encrypt SM4 Multiple of block
size.

Same as input
length.

No final part.

C_Decrypt SM4 Multiple of block
size.

Same as input
length.

No final part.

For CKM_IBM_SM4_CBC, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM4_ECB
CKM_IBM_SM4_ECB is a mechanism for single-part encryption and decryption, key wrapping, and key
unwrapping based on the Chinese national algorithm SM4 and electronic codebook mode.
CKM_IBM_SM4_ECB does not have a parameter, but can wrap and unwrap an SM4 key.

For wrapping, CKM_IBM_SM4_ECB encrypts the value of the CKA_VALUE attribute of the key that is
wrapped, padded on the trailing end with up to block size minus one null bytes so that the resulting length
is a multiple of the block size. The output data is the same length as the padded input data. It does not
wrap the key type, key length, or any other information about the key. Your application must supply this
information separately.

For unwrapping, CKM_IBM_SM4_ECB decrypts the wrapped key and truncates the result according to the
CKA_KEY_TYPE attribute of the template and if it has one and the key type supports it, the
CKA_VALUE_LEN attribute of the template. CKM_IBM_SM4_ECB adds the result as the CKA_VALUE
attribute of the new key. Other attributes required by the key type must be specified in the template.

Chapter 4. Regional cryptographic servers 81

Constraints on key types and the length of data are summarized in Table 38 on page 82:

Table 38. CKM_IBM_SM4_ECB: Key and data length

Function Key type Input length Output length Comments

C_Encrypt SM4 Multiple of block
size.

Same as input
length.

No final part.

C_Decrypt SM4 Multiple of block
size.

Same as input
length.

No final part.

C_WrapKey SM4 Any length. Input length
rounded up to a
multiple of the block
size.

None.

C_UnwrapKey SM4 Multiple of block
size.

Determined by the
type of key being
unwrapped or
CKA_VALUE_LEN.

None.

For CKM_IBM_SM4_ECB, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM4_ECB_ENCRYPT_DATA
Key derivation by SM4 data encryption mechanisms allow derivation of keys using the result of an
encryption operation as the key value. You can use them with the C_DeriveKey function. The only
mechanism currently defined is CKM_IBM_SM4_ECB_ENCRYPT_DATA.

CKM_IBM_SM4_ECB_ENCRYPT_DATA has a parameter, a CK_KEY_DERIVATION_STRING_DATA
structure, that specifies the data to be encrypted to produce the key value.

CKM_IBM_SM4_ECB_ENCRYPT_DATA functions by performing the encryption over the data provided
using the base key. The resulting cipher text is used to create the key value of the resulting key. If not all
the cipher text is used, the part discarded is from the trailing end (least significant bytes) of the cipher text
data. The derived key is defined by the attribute template supplied, but constrained by the length of
cipher text available for the key value and other normal PKCS11 derivation constraints:

• If neither length or key type is provided in the template, the key produced by
CKM_IBM_SM4_ECB_ENCRYPT_DATA is a generic secret key.

• If length is provided, but key type is not provided in the template, the key produced by
CKM_IBM_SM4_ECB_ENCRYPT_DATA is a generic secret key of the specified length.

• If a key type is provided, but length is not provided in the template, that key type must have a well-
defined length. If the key type does have a well-defined length, the key produced by
CKM_IBM_SM4_ECB_ENCRYPT_DATA is of the type specified in the template. If the key type does not
have a well-defined length, an error is returned.

• If both a key type and a length are provided in the template, the length must be compatible with that
key type. The key produced by CKM_IBM_SM4_ECB_ENCRYPT_DATA is of the specified type and length.

If the data is too short to make the requested key, CKM_IBM_SM4_ECB_ENCRYPT_DATA returns
CKR_DATA_LENGTH_INVALID.

CKM_IBM_SM4_ISO2_MAC
CKM_IBM_ISO2_SM4_MAC is a special case of the general-length ISO-padded SM4-MAC mechanism.
CKM_IBM_ISO2_SM4_MAC always produces and verifies MACs that are half the block size in length.
CKM_IBM_ISO2_SM4_MAC does not have a parameter.

Constraints on key types and the length of data are summarized in Table 39 on page 83:

82 z/OS: z/OS ICSF Writing PKCS #11 Applications

Table 39. CKM_IBM_ISO2_SM4_MAC: Key and data length

Function Key type Data length Signature length

C_Sign SM4 Any. 1/2 block size (8 bytes).

C_Verify SM4 Any. 1/2 block size (8 bytes).

For CKM_IBM_ISO2_SM4_MAC, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM4_ISO2_MAC_GENERAL
CKM_IBM_SM4_ISO2_MAC_GENERAL is a mechanism for single-part signatures and verification based
on the Chinese national algorithm SM4 with data authentication as defined by as defined in FIPS PUB
113. The data being MACed is padded according to ISO/IEC 9797-1 padding method 2.
CKM_IBM_SM4_ISO2_MAC_GENERAL has a parameter, a CK_MAC_GENERAL_PARAMS structure, that
specifies the output length desired from the mechanism.

The output bytes from CKM_IBM_SM4_ISO2_MAC_GENERAL are taken from the start of the final SM4
cipher block produced in the MACing process.

Constraints on key types and the length of data are summarized in Table 40 on page 83:

Table 40. CKM_IBM_SM4_ISO2_MAC_GENERAL: Key and data length

Function Key type Data length Signature length

C_Sign SM4 Any. 4-8 bytes, as specified
in parameters.

C_Verify SM4 Any. 4-8 bytes, as specified
in parameters.

For CKM_IBM_SM4_ISO2_MAC_GENERAL, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure are not used.

CKM_IBM_SM4_KEY_GEN
CKM_IBM_SM4_KEY_GEN is a key generation mechanism for SM4. CKM_IBM_SM4_KEY_GEN does not
have a parameter, but generates SM4 keys with a length of 16 bytes.

CKM_IBM_SM4_KEY_GEN adds the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE attributes to the new
key. Other attributes supported by the SM4 key type (specifically, the flags indicating the functions that
the key supports) may be specified in the template for the key or are assigned default initial values.

For CKM_IBM_SM4_KEY_GEN, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM4_MAC
CKM_IBM_SM4_MAC is a special case of the general-length SM4-MAC mechanism. CKM_IBM_SM4_MAC
always produces and verifies MACs that are half the block size in length. CKM_IBM_SM4_MAC does not
have a parameter.

Constraints on key types and the length of data are summarized in Table 41 on page 83:

Table 41. CKM_IBM_SM4_MAC: Key and data length

Function Key type Data length Signature length

C_Sign SM4 Any. 1/2 block size (8 bytes).

C_Verify SM4 Any. 1/2 block size (8 bytes).

Chapter 4. Regional cryptographic servers 83

For CKM_IBM_SM4_MAC, the ulMinKeySize and ulMaxKeySize fields of the CK_MECHANISM_INFO
structure are not used.

CKM_IBM_SM4_MAC_GENERAL
CKM_IBM_SM4_MAC_GENERAL is a mechanism for single-part signatures and verification based on the
Chinese national algorithm SM4 with data authentication as defined in FIPS PUB 113. The data being
MACed is padded according to ISO/IEC 9797-1 padding method 1 (zero-padded if not already a block
multiple). CKM_IBM_SM4_MAC_GENERAL has a parameter, a CK_MAC_GENERAL_PARAMS structure,
that specifies the output length desired from the mechanism.

The output bytes from CKM_IBM_SM4_MAC_GENERAL are taken from the start of the final SM4 cipher
block produced in the MACing process.

Constraints on key types and the length of data are summarized in Table 42 on page 84:

Table 42. CKM_IBM_SM4_MAC_GENERAL: Key and data length

Function Key type Data length Signature length

C_Sign SM4 Any. 4-8 bytes, as specified
in parameters.

C_Verify SM4 Any. 4-8 bytes, as specified
in parameters.

For CKM_IBM_SM4_MAC_GENERAL, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure are not used.

CKM_XOR_BASE_AND_DATA
Similar to mechanism CKM_IBM_SM4_ECB_ENCRYPT_DATA, CKM_XOR_BASE_AND_DATA derives an
SM4 key from another SM4 key (the base key) by XORing data with the base key.

CKM_XOR_BASE_AND_DATA has a parameter, a CK_KEY_DERIVATION_STRING_DATA structure, that
specifies the data to be XORed with the base key to produce the key value.

Additional manifest constants for regional cryptographic servers
#define CKK_IBM_SM2 0x80050002
#define CKM_IBM_SM2_KEY_PAIR_GEN 0x8005000A
#define CKM_IBM_SM2 0x8005000B
#define CKM_IBM_SM2_SM3 0x8005000C
#define CKM_IBM_SM2_ENCRYPT 0x8005000D
#define CKM_IBM_SM3 0x8005000E
#define CKK_IBM_SM4 0x80050001
#define CKM_IBM_SM4_KEY_GEN 0x80050001
#define CKM_IBM_SM4_ECB 0x80050004
#define CKM_IBM_SM4_CBC 0x80050002
#define CKM_IBM_SM4_MAC_GENERAL 0x80050007
#define CKM_IBM_SM4_MAC 0x80058007
#define CKM_IBM_ISO2_SM4_MAC_GENERAL 0x80050008
#define CKM_IBM_ISO2_SM4_MAC 0x80058008
#define CKM_IBM_SM4_ECB_ENCRYPT_DATA 0x80050009
#define CKM_XOR_BASE_AND_DATA 0x00000364 (standard mechanism)

API examples for regional cryptographic servers
To generate an issuer MK:

CK_MECHANISM mech;
CK_OBJECT_HANDLE h_imkey;
CK_BBOOL true = CK_TRUE;
CK_ATTRIBUTE key_gen_tmpl[] = {
 {CKA_DERIVE, &true, sizeof(true)} // key can derive other keys
};

84 z/OS: z/OS ICSF Writing PKCS #11 Applications

mech.mechanism = CKM_IBM_SM4_KEY_GEN;
mech.ulParameterLen = 0;
mech.pParameter = NULL;

rc = C_GenerateKey(session, &mech, key_gen_tmpl, 1, &h_imkey);

To derive an ICC MK:

CK_OBJECT_HANDLE h_icckey;
CK_KEY_TYPE keyType = CKK_IBM_SM4;
CK_ATTRIBUTE derive_tmpl[] = {
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_DERIVE, &true, sizeof(true)} // key can derive other keys
};
CK_KEY_DERIVATION_STRING_DATA drv_data;
CK_BYTE pan[8] = { 0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78 };
CK_BYTE Y[16];

memcpy(Y, pan, 8);
for (i=0; i<8; i++)
 Y[i+8] = Y[i] ^ 0xFF;

drv_data.pData = Y;
drv_data.ulLen = 16;

mech.mechanism = CKM_IBM_SM4_ECB_ENCRYPT_DATA;
mech.ulParameterLen = sizeof(drv_data);
mech.pParameter = &drv_data;

rc = C_DeriveKey(session, &mech, himkey, derive_tmpl, 2, &h_icckey);

To derive an AC session key (Note: Other session keys are derived similarly to this sample):

CK_OBJECT_HANDLE h_ackey;
CK_ATTRIBUTE derive_tmpl[] = {
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_SIGN, &true, sizeof(true)}, // key can sign and verify MACs
 {CKA_VERIFY, &true, sizeof(true)}
};
CK_KEY_DERIVATION_STRING_DATA drv_data;
CK_BYTE atc[2] = { 0x12, 0x34 }; // transaction counter value
CK_BYTE Z[16];

memset(Z, 0x00, sizeof(Z));
Z[6] = atc[0];
Z[7] = atc[1];
Z[14] = atc[0] ^ 0xFF;
Z[15] = atc[1] ^ 0xFF;

drv_data.pData = Z;
drv_data.ulLen = 16;

mech.mechanism = CKM_IBM_SM4_ECB_ENCRYPT_DATA;
mech.ulParameterLen = sizeof(drv_data);
mech.pParameter = &drv_data;

rc = C_DeriveKey(session, &mech, h_icckey, derive_tmpl, 3, &h_ackey);

To verify an ARQC: address of cryptogram data

CK_BYTE *pARQCdata = <address of cryptogram data>
CK_ULONG ulARQCdataLen = <length of cryptogram data>
CK_BYTE *pARQC = <address of ARQC>

mech.mechanism = CKM_IBM_ISO2_SM4_MAC; // ISO padding
mech.ulParameterLen = 0;
mech.pParameter = NULL;

rc = C_VerifyInit(session, &mech, h_ackey);
rc = C_Verify(session, pARQCdata, ulARQCdataLen, pARQC, 8);

To generate the ARPC :

CK_BYTE arc[2] = { 0x30, 0x35 }; // online declined
CK_BYTE ARPCdata[16];
CK_BYTE ARPC[8];

Chapter 4. Regional cryptographic servers 85

CK_ULONG ulARPCLen = sizeof(ARPC);

memset(ARPCdata, 0x00, sizeof(ARPCdata));
memcpy(ARPCdata, pARQC, 8);
ARPCdata[0] ^= arc[0]; // XOR leading bytes of ARQC with ARC
ARPCdata[1] ^= arc[1];

mech.mechanism = CKM_IBM_SM4_MAC; // No (or zero) padding
mech.ulParameterLen = 0;
mech.pParameter = NULL;

C_SignInit(session, &mech, h_ackey);
C_Sign(session, ARPCdata, sizeof(ARPCdata), ARPC, &ulARPCLen);

To encrypt a script in CBC mode:

CK_BYTE iv[16];
CK_BYTE *pScriptData = <address of script data>
CK_ULONG ulScriptDataLen = <length of script data>

memset(iv, 0x00, sizeof(iv)); // zero IV
mech.mechanism = CKM_IBM_SM4_CBC;
mech.ulParameterLen = sizeof(iv);
mech.pParameter = iv;

C_EncryptInit(session, &mech, h_enckey);
C_Encrypt(session, pScriptData, ulScriptDataLen,
 pScriptData, &ulScriptDataLen); // encrypt in place

To sign (or MAC) the script:

CK_BYTE scriptMAC[4]; // 4-byte MAC is desired
CK_ULONG ulScriptMAClen;

ulScriptMAClen = sizeof(scriptMAC);

mech.mechanism = CKM_IBM_ISO2_SM4_MAC_GENERAL;
mech.ulParameterLen = sizeof(ulScriptMAClen);
mech.pParameter = &ulScriptMAClen;

C_SignInit(session, &mech, h_mackey);
C_Sign(session, pScriptData, ulScriptDataLen,
 scriptMAC, &ulScriptMAClen);

To derive a transport (or unwrapping) key from 3 key parts:

CK_OBJECT_HANDLE h_transkey, h_basekey, h_subkey;
CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;

CK_BYTE part1[16] = {
0x68, 0x1e, 0xdf, 0x34, 0xd2, 0x06, 0x96, 0x5e,
0x86, 0xb3, 0xe9, 0x4f, 0x53, 0x6e, 0x42, 0x46
};
CK_BYTE part2[16] = {
0xf3, 0x24, 0x18, 0x4f, 0x3c, 0x88, 0x92, 0xb7,
0x2b, 0xdc, 0x9d, 0x7c, 0x61, 0x29, 0x19, 0xde
};
CK_BYTE part3[16] = {
0xce, 0x4d, 0xd6, 0xb8, 0x1f, 0x6d, 0xe9, 0x92,
0xa8, 0x30, 0xda, 0xab, 0x1f, 0x00, 0x80, 0x28
};

CK_ATTRIBUTE create_tmpl[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_DERIVE, &true, sizeof(true)}, // part 1 can derive
 {CKA_VALUE, part1, sizeof(part1)}
};

CK_ATTRIBUTE derive_tmpl[] = {
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_DERIVE, &true, sizeof(true)} // partial keys derive other keys
};

CK_ATTRIBUTE final_derive_tmpl[] = {
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_UNWRAP, &true, sizeof(true)} // final key can unwrap other keys
};

86 z/OS: z/OS ICSF Writing PKCS #11 Applications

CK_KEY_DERIVATION_STRING_DATA drv_data;

mech.mechanism = CKM_XOR_BASE_AND_DATA;
mech.ulParameterLen = sizeof(drv_data);
mech.pParameter = &drv_data;

// Create part 1
rc = C_CreateObject(session, &create_tmpl, 4, &h_basekey);

// XOR part 2
drv_data.pData = part2;
drv_data.ulLen = sizeof(part2);
rc = C_DeriveKey(session, &mech, h_basekey, derive_tmpl, 2, &h_subkey);

// Destroy no longer needed partial key
rc = C_DestroyObject(session, h_basekey);
h_basekey = h_subkey;

// XOR part 3
drv_data.pData = part3;
drv_data.ulLen = sizeof(part3);
rc = C_DeriveKey(session, &mech, h_basekey, final_derive_tmpl, 2,
&h_subkey);

// Destroy no longer needed partial key
rc = C_DestroyObject(session, h_basekey);

h_transkey = h_subkey; // final derivation is the transport key

To import (or unwrap) an issuer MK generated elsewhere:

CK_ATTRIBUTE unwrap_tmpl[] = {
 {CKA_CLASS, &keyClass, sizeof(keyClass)},
 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},
 {CKA_DERIVE, &true, sizeof(true)} // im keys can derive
};

CK_BYTE *wrp_data = <address of wrapped key data>
CK_ULONG wrp_data_len = <length of wrapped data>

mech.mechanism = CKM_IBM_SM4_ECB;
mech.ulParameterLen = 0;
mech.pParameter = NULL;

rc = C_UnwrapKey(session, &mech, h_transkey, wrp_data, wrp_data_len,
 unwrap_tmpl, 3, &h_imkey);

Chapter 4. Regional cryptographic servers 87

88 z/OS: z/OS ICSF Writing PKCS #11 Applications

Chapter 5. ICSF PKCS #11 callable services

The PKCS #11 C language API (described in Chapter 2, “The C API,” on page 19) requires a Language
Environment (LE) runtime to operate. Although an LE is normally provided with C application programs, if
you are coding your application in some other language (for example, Assembler), acquiring an LE runtime
may not be desirable. For these situations, ICSF provides a base set of PKCS #11 callable services that
you can use. (In fact, the C API itself uses these services.) These callable services do not require an LE
runtime. The ICSF PKCS #11 callable services include:

• Derive key (CSFPDVK)
• Derive multiple keys (CSFPDMK)
• Generate MAC (CSFPHMG)
• Generate key pair (CSFPGKP)
• Generate secret key (CSFPGSK)
• Get attribute value (CSFPGAV)
• One-way hash generate (CSFPOWH)
• Private key sign (CSFPPKS)
• Pseudo-random function (CSFPPRF)
• Public key verify (CSFPPKV)
• Secret key decrypt (CSFPSKD)
• Secret key encrypt (CSFPSKE)
• Set attribute value (CSFPSAV)
• Token record create (CSFPTRC)
• Token record delete (CSFPTRD)
• Token record list (CSFPTRL)
• Unwrap key (CSFPUWK)
• Verify MAC (CSFPHMV)
• Wrap key (CSFPWPK)

Calls to the system authorization facility (SAF) determine access authorization for the callable services.
The CSFSERV class controls access to the PKCS #11 callable services.

For details about the PKCS #11 callable services, see z/OS Cryptographic Services ICSF Application
Programmer's Guide.

© Copyright IBM Corp. 2007, 2021 89

90 z/OS: z/OS ICSF Writing PKCS #11 Applications

Appendix A. SMP/E installation data sets, directories,
and files

The following dynamic link libraries (DLLs) are linked into SYS1.SIEALNKE:
CSNPCAPI

The main DLL invoked by applications to use PKCS #11 functions. Also shipped as an HFS file
at /usr/lpp/pkcs11/lib/csnpcapi.so.

CSNPCA64
64-bit addressing mode version of CSNPCAPI. Also shipped as an HFS file at /usr/lpp/pkcs11/lib/
csnpca64.so.

CSNPCA3X
31-bit addressing mode version of CSNPCAPI with XPLINK. Also shipped as an HFS file at /usr/lpp/
pkcs11/lib/csnpca3x.so

CSNPCINT
An internal DLL loaded by CSNPCAPI.

CSNPCI64
64-bit addressing mode version of CSNPCINT.

CSNPCI3X
31-bit addressing mode version of CSNPCINT with XPLINK.

CSNPCUTL
An internal DLL implicitly loaded for utilities.

CSNPCU64
64-bit addressing mode version of CSNPCUTL.

CSNPCU3X
31-bit addressing mode version of CSNPCUTL with XPLINK.

CSFDLL31
CSFDLL in 31-bit addressing mode

CSFDLL64
CSFDLL in 64-bit addressing mode.

CSFDLL3X
31-bit addressing mode version of CSFDLL31 with XPLINK.

SMP/E installs the product files into the HFS directory /usr/lpp/pkcs11. This directory contains the
following subdirectories and files:

• /usr/lpp/pkcs11/include subdirectory (members are symbolically linked to /usr/include)
csnpdefs.h

A header file that applications must include to use PKCS #11 functions. Also copied to
SYS1.SIEAHDR.H(CSNPDEFS).

csfbext.h
A header file that applications must include to use the CSFDLLs. Also copied to
SYS1.SIEAHDR.H(CSFBEXT).

• /usr/lpp/pkcs11/lib subdirectory (members are symbolically linked to /usr/lib)
CSNPCAPI.x

Side deck for CSNPCAPI. Also copied to SYS1.SIEASID(CSNPCAPI).
CSNPCA64.x

Side deck for CSNPCA64. Also copied to SYS1.SIEASID(CSNPCA64).

© Copyright IBM Corp. 2007, 2021 91

CSNPCA3X.x
Side deck for CSNPCA3X. Also copied to SYS1.SIEASID(CSNPCA3X).

csnpcapi.so
csnpca64.so
csnpca3x.so
CSFDLL31.x

Side deck for CSFDLL31. Also copied to SYS1.SIEASID(CSFDLL31).
CSFDLL64.x

Side deck for CSFDLL64. Also copied to SYS1.SIEASID(CSFDLL64).
CSFDLL3X.x

Side deck for CSFDLL3X. Also copied to SYS1.SIEASID(CSFDLL3X).
• usr/lpp/pkcs11/bin subdirectory

testpkcs11
Program to test system configuration for PKCS #11.

• /usr/lpp/pkcs11/samples subdirectory
testpkcs11.c

Source code for the testpkcs11 program.
Makefile.testpkcs11

Makefile for the testpkcs11 program.
Makefile3X.testpkcs11

Makefile for 31-bit addressing mode version of the testpkcs11 program with XPLINK.
Makefile64.testpkcs11

Makefile for 64-bit addressing mode version of the testpkcs11 program.
updatecomp.c

Source code for the updatecomp.c program.
Makefile.updatecomp

Makefile for the updatecomp.c program.
Makefile3X.updatecomp

Makefile for 31-bit addressing mode version of updatecomp.c program with XPLINK.
Makefile64.updatecomp

Makefile for 64-bit addressing mode version of the updatecomp.c program.

92 z/OS: z/OS ICSF Writing PKCS #11 Applications

Appendix B. Source code for the testpkcs11 sample
program

For information about building and using the testpkcs11 sample program, see Chapter 3, “Sample PKCS
#11 C programs ,” on page 73.

/***/
/* */
/* COMPONENT_NAME: testpkcs11.c */
/* */
/* Licensed Materials - Property of IBM */
/* 5650-ZOS */
/* Copyright IBM Corp. 2007, 2013 */
/* Status = HCR7770 */
/* */
/***/
/***/
/* */
/* This file contains sample code. IBM PROVIDES THIS CODE ON AN */
/* 'AS IS' BASIS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR */
/* IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES */
/* OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/***/
/* */
/* Change Activity: */
/* $L0=P11C1 ,HCR7740, 060124,PDJS: PKCS11 initial release */
/* $D1=MG08269 ,HCR7740, 061114,PDJS: Misc fixes */
/* $D2=MG08740 ,HCR7740, 070302,PDGL: XPLINK */
/* $P1=MG13406 ,HCR7770, 090812,PDGL: fix XPLINK define */
/* $P2=MG13431 ,HCR7770, 090826,PDER: update prolog */
/* */
/***/

#ifdef IBM
/* Customers may remove this copyright statement */
#pragma comment (copyright,"\
Licensed Materials - Property of IBM \
5650-ZOS Copyright IBM Corp. 2007, 2013 \
All Rights Reserved \
US Government Users Restricted Rights - \
Use, duplication or disclosure restricted by \
GSA ADP Schedule Contract with IBM Corp.")
#endif

/* Install verification test for PKCS #11 */

#define _UNIX03_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory.h>
#include <dlfcn.h>
#include <sys/timeb.h>
#include <csnpdefs.h>

int skip_token_obj;

CK_FUNCTION_LIST *funcs;
CK_SLOT_ID slotID = CK_UNAVAILABLE_INFORMATION;
CK_BYTE tokenName[32];

void ProcessRetCode(CK_RV rc)
{
 switch (rc) {
 case CKR_OK: printf(" CKR_OK"); break;
 case CKR_CANCEL: printf(" CKR_CANCEL"); break;
 case CKR_HOST_MEMORY: printf(" CKR_HOST_MEMORY"); break;
 case CKR_SLOT_ID_INVALID: printf(" CKR_SLOT_ID_INVALID"); break;
 case CKR_GENERAL_ERROR: printf(" CKR_GENERAL_ERROR"); break;
 case CKR_FUNCTION_FAILED: printf(" CKR_FUNCTION_FAILED"); break;
 case CKR_ARGUMENTS_BAD: printf(" CKR_ARGUMENTS_BAD"); break;

© Copyright IBM Corp. 2007, 2021 93

 case CKR_NO_EVENT: printf(" CKR_NO_EVENT"); break;
 case CKR_NEED_TO_CREATE_THREADS: printf(" CKR_NEED_TO_CREATE_THREADS"); break;
 case CKR_CANT_LOCK: printf(" CKR_CANT_LOCK"); break;
 case CKR_ATTRIBUTE_READ_ONLY: printf(" CKR_ATTRIBUTE_READ_ONLY"); break;
 case CKR_ATTRIBUTE_SENSITIVE: printf(" CKR_ATTRIBUTE_SENSITIVE"); break;
 case CKR_ATTRIBUTE_TYPE_INVALID: printf(" CKR_ATTRIBUTE_TYPE_INVALID"); break;
 case CKR_ATTRIBUTE_VALUE_INVALID: printf(" CKR_ATTRIBUTE_VALUE_INVALID"); break;
 case CKR_DATA_INVALID: printf(" CKR_DATA_INVALID"); break;
 case CKR_DATA_LEN_RANGE: printf(" CKR_DATA_LEN_RANGE"); break;
 case CKR_DEVICE_ERROR: printf(" CKR_DEVICE_ERROR"); break;
 case CKR_DEVICE_MEMORY: printf(" CKR_DEVICE_MEMORY"); break;
 case CKR_DEVICE_REMOVED: printf(" CKR_DEVICE_REMOVED"); break;
 case CKR_ENCRYPTED_DATA_INVALID: printf(" CKR_ENCRYPTED_DATA_INVALID"); break;
 case CKR_ENCRYPTED_DATA_LEN_RANGE: printf(" CKR_ENCRYPTED_DATA_LEN_RANGE"); break;
 case CKR_FUNCTION_CANCELED: printf(" CKR_FUNCTION_CANCELED"); break;
 case CKR_FUNCTION_NOT_PARALLEL: printf(" CKR_FUNCTION_NOT_PARALLEL"); break;
 case CKR_FUNCTION_NOT_SUPPORTED: printf(" CKR_FUNCTION_NOT_SUPPORTED"); break;
 case CKR_KEY_HANDLE_INVALID: printf(" CKR_KEY_HANDLE_INVALID"); break;
 case CKR_KEY_SIZE_RANGE: printf(" CKR_KEY_SIZE_RANGE"); break;
 case CKR_KEY_TYPE_INCONSISTENT: printf(" CKR_KEY_TYPE_INCONSISTENT"); break;
 case CKR_KEY_NOT_NEEDED: printf(" CKR_KEY_NOT_NEEDED"); break;
 case CKR_KEY_CHANGED: printf(" CKR_KEY_CHANGED"); break;
 case CKR_KEY_NEEDED: printf(" CKR_KEY_NEEDED"); break;
 case CKR_KEY_INDIGESTIBLE: printf(" CKR_KEY_INDIGESTIBLE"); break;
 case CKR_KEY_FUNCTION_NOT_PERMITTED: printf(" CKR_KEY_FUNCTION_NOT_PERMITTED"); break;
 case CKR_KEY_NOT_WRAPPABLE: printf(" CKR_KEY_NOT_WRAPPABLE"); break;
 case CKR_KEY_UNEXTRACTABLE: printf(" CKR_KEY_UNEXTRACTABLE"); break;
 case CKR_MECHANISM_INVALID: printf(" CKR_MECHANISM_INVALID"); break;
 case CKR_MECHANISM_PARAM_INVALID: printf(" CKR_MECHANISM_PARAM_INVALID"); break;
 case CKR_OBJECT_HANDLE_INVALID: printf(" CKR_OBJECT_HANDLE_INVALID"); break;
 case CKR_OPERATION_ACTIVE: printf(" CKR_OPERATION_ACTIVE"); break;
 case CKR_OPERATION_NOT_INITIALIZED: printf(" CKR_OPERATION_NOT_INITIALIZED"); break;
 case CKR_PIN_INCORRECT: printf(" CKR_PIN_INCORRECT"); break;
 case CKR_PIN_INVALID: printf(" CKR_PIN_INVALID"); break;
 case CKR_PIN_LEN_RANGE: printf(" CKR_PIN_LEN_RANGE"); break;
 case CKR_PIN_EXPIRED: printf(" CKR_PIN_EXPIRED"); break;
 case CKR_PIN_LOCKED: printf(" CKR_PIN_LOCKED"); break;
 case CKR_SESSION_CLOSED: printf(" CKR_SESSION_CLOSED"); break;
 case CKR_SESSION_COUNT: printf(" CKR_SESSION_COUNT"); break;
 case CKR_SESSION_HANDLE_INVALID: printf(" CKR_SESSION_HANDLE_INVALID"); break;
 case CKR_SESSION_PARALLEL_NOT_SUPPORTED: printf(" CKR_SESSION_PARALLEL_NOT_SUPPORTED"); break;
 case CKR_SESSION_READ_ONLY: printf(" CKR_SESSION_READ_ONLY"); break;
 case CKR_SESSION_EXISTS: printf(" CKR_SESSION_EXISTS"); break;
 case CKR_SESSION_READ_ONLY_EXISTS: printf(" CKR_SESSION_READ_ONLY_EXISTS"); break;
 case CKR_SESSION_READ_WRITE_SO_EXISTS: printf(" CKR_SESSION_READ_WRITE_SO_EXISTS"); break;
 case CKR_SIGNATURE_INVALID: printf(" CKR_SIGNATURE_INVALID"); break;
 case CKR_SIGNATURE_LEN_RANGE: printf(" CKR_SIGNATURE_LEN_RANGE"); break;
 case CKR_TEMPLATE_INCOMPLETE: printf(" CKR_TEMPLATE_INCOMPLETE"); break;
 case CKR_TEMPLATE_INCONSISTENT: printf(" CKR_TEMPLATE_INCONSISTENT"); break;
 case CKR_TOKEN_NOT_PRESENT:
 printf(" CKR_TOKEN_NOT_PRESENT - ICSF is not active or not configured for TKDS operations");
break;
 case CKR_TOKEN_NOT_RECOGNIZED:
 printf(" CKR_TOKEN_NOT_RECOGNIZED - You are not authorized to perform the token operation");
break;
 case CKR_TOKEN_WRITE_PROTECTED: printf(" CKR_TOKEN_WRITE_PROTECTED"); break;
 case CKR_UNWRAPPING_KEY_HANDLE_INVALID: printf(" CKR_UNWRAPPING_KEY_HANDLE_INVALID"); break;
 case CKR_UNWRAPPING_KEY_SIZE_RANGE: printf(" CKR_UNWRAPPING_KEY_SIZE_RANGE"); break;
 case CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: printf(" CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT"); break;
 case CKR_USER_ALREADY_LOGGED_IN: printf(" CKR_USER_ALREADY_LOGGED_IN"); break;
 case CKR_USER_NOT_LOGGED_IN: printf(" CKR_USER_NOT_LOGGED_IN"); break;
 case CKR_USER_PIN_NOT_INITIALIZED: printf(" CKR_USER_PIN_NOT_INITIALIZED"); break;
 case CKR_USER_TYPE_INVALID: printf(" CKR_USER_TYPE_INVALID"); break;
 case CKR_USER_ANOTHER_ALREADY_LOGGED_IN: printf(" CKR_USER_ANOTHER_ALREADY_LOGGED_IN"); break;
 case CKR_USER_TOO_MANY_TYPES: printf(" CKR_USER_TOO_MANY_TYPES"); break;
 case CKR_WRAPPED_KEY_INVALID: printf(" CKR_WRAPPED_KEY_INVALID"); break;
 case CKR_WRAPPED_KEY_LEN_RANGE: printf(" CKR_WRAPPED_KEY_LEN_RANGE"); break;
 case CKR_WRAPPING_KEY_HANDLE_INVALID: printf(" CKR_WRAPPING_KEY_HANDLE_INVALID"); break;
 case CKR_WRAPPING_KEY_SIZE_RANGE: printf(" CKR_WRAPPING_KEY_SIZE_RANGE"); break;
 case CKR_WRAPPING_KEY_TYPE_INCONSISTENT: printf(" CKR_WRAPPING_KEY_TYPE_INCONSISTENT"); break;
 case CKR_RANDOM_SEED_NOT_SUPPORTED: printf(" CKR_RANDOM_SEED_NOT_SUPPORTED"); break;
 case CKR_RANDOM_NO_RNG: printf(" CKR_RANDOM_NO_RNG"); break;
 case CKR_BUFFER_TOO_SMALL: printf(" CKR_BUFFER_TOO_SMALL"); break;
 case CKR_SAVED_STATE_INVALID: printf(" CKR_SAVED_STATE_INVALID"); break;
 case CKR_INFORMATION_SENSITIVE: printf(" CKR_INFORMATION_SENSITIVE"); break;
 case CKR_STATE_UNSAVEABLE: printf(" CKR_STATE_UNSAVEABLE"); break;
 case CKR_CRYPTOKI_NOT_INITIALIZED: printf(" CKR_CRYPTOKI_NOT_INITIALIZED"); break;
 case CKR_CRYPTOKI_ALREADY_INITIALIZED: printf(" CKR_CRYPTOKI_ALREADY_INITIALIZED"); break;
 case CKR_MUTEX_BAD: printf(" CKR_MUTEX_BAD"); break;
 case CKR_MUTEX_NOT_LOCKED: printf(" CKR_MUTEX_NOT_LOCKED"); break;
 /* Otherwise - Value does not match a known PKCS11 return value */
 }

94 z/OS: z/OS ICSF Writing PKCS #11 Applications

}

void showError(char *str, CK_RV rc)
{
 printf("%s returned: %d (0x%0x)", str, rc, rc);
 ProcessRetCode(rc);
 printf("\n");
}

CK_RV createToken(void)
{
 CK_VOID_PTR p = NULL; // @D1C
 CK_RV rc;
 CK_FLAGS flags = 0;

 printf("Creating the temporary token... \n");
 /* wait for slot event. On z/OS this creates a new slot synchronously */
 rc = funcs->C_WaitForSlotEvent(flags, &slotID, p);
 if (rc != CKR_OK) {
 showError(" C_WaitForSlotEvent #1", rc);
 return !CKR_OK;
 }
 /* The slot has been created. Now initialize the token in the slot */
 /* On z/OS no PIN is required, so we will pass NULL. */
 rc= funcs->C_InitToken(slotID, NULL, 0, tokenName);
 if (rc != CKR_OK) {
 showError(" C_InitToken #1", rc);
 if (rc == CKR_ARGUMENTS_BAD) {
 printf(" Make sure your the token name you specified meets ICSF rules:\n");
 printf(" Contains only alphanumeric characters, nationals (@#$), and periods.\n");
 printf(" The first character cannot be a numeric or a period.\n");
 }
 return !CKR_OK;
 }

 return CKR_OK;
}

CK_RV deleteToken(void)
{
 CK_VOID_PTR p;
 CK_RV rc;
 CK_FLAGS flags = 0;

 if (slotID != CK_UNAVAILABLE_INFORMATION) {
 printf("Deleting the temporary token... \n");
 /* C_InitToken with the reserved label $$DELETE-TOKEN$$ is the way to delete a token */
 /* on z/OS */
 memset(tokenName, ' ', sizeof(tokenName));
 memcpy(tokenName, DEL_TOK, sizeof(DEL_TOK));
 rc= funcs->C_InitToken(slotID, NULL, 0, tokenName);
 if (rc != CKR_OK) {
 showError(" C_InitToken #2 (for delete)", rc);
 return !CKR_OK;
 }
 }

 return CKR_OK;
}

CK_RV encryptRSA(void)
{
 CK_BYTE data1[100];
 CK_BYTE data2[256];
 CK_BYTE cipher[256];
 CK_SLOT_ID slot_id;
 CK_SESSION_HANDLE session;
 CK_MECHANISM mech;
 CK_OBJECT_HANDLE publ_key, priv_key;
 CK_FLAGS flags;
 CK_ULONG i;
 CK_ULONG len1, len2, cipherlen;
 CK_RV rc;
 static CK_OBJECT_CLASS class = CKO_PUBLIC_KEY;
 static CK_KEY_TYPE type= CKK_RSA;
 static CK_OBJECT_CLASS privclass = CKO_PRIVATE_KEY;
 static CK_BBOOL true = TRUE;
 static CK_BBOOL false = FALSE;

Appendix B. Source code for the testpkcs11 sample program 95

 static CK_ULONG bits = 1024;
 static CK_BYTE pub_exp[] = { 0x01, 0x00, 0x01 };

 /* Attributes for the public key to be generated */
 CK_ATTRIBUTE pub_tmpl[] = {
 {CKA_MODULUS_BITS, &bits, sizeof(bits) },
 {CKA_ENCRYPT, &true, sizeof(true) },
 {CKA_VERIFY, &true, sizeof(true) },
 {CKA_PUBLIC_EXPONENT, &pub_exp, sizeof(pub_exp) }
 };

 /* Attributes for the private key to be generated */
 CK_ATTRIBUTE priv_tmpl[] =
 {
 {CKA_DECRYPT, &true, sizeof(true) },
 {CKA_SIGN, &true, sizeof(true) }
 };

 slot_id = slotID;
 flags = CKF_SERIAL_SESSION | CKF_RW_SESSION;
 printf("Opening a session... \n");
 rc = funcs->C_OpenSession(slot_id, flags, (CK_VOID_PTR) NULL, NULL, &session);
 if (rc != CKR_OK) {
 showError(" C_OpenSession #1", rc);
 return !CKR_OK;
 }

 printf("Generating keys. This may take a while... \n");
 mech.mechanism = CKM_RSA_PKCS_KEY_PAIR_GEN;
 mech.ulParameterLen = 0;
 mech.pParameter = NULL;

 rc = funcs->C_GenerateKeyPair(session, &mech,
 pub_tmpl, 4,
 priv_tmpl, 2,
 &publ_key, &priv_key);
 if (rc != CKR_OK) {
 showError(" C_GenerateKeyPair #1", rc);
 return !CKR_OK;
 }

 /* now, encrypt some data */
 len1 = sizeof(data1);
 len2 = sizeof(data2);
 cipherlen = sizeof(cipher);

 for (i=0; i < len1; i++)
 data1[i] = (i) % 255;

 mech.mechanism = CKM_RSA_PKCS;
 mech.ulParameterLen = 0;
 mech.pParameter = NULL;

 printf("Enciphering data... \n");
 rc = funcs->C_EncryptInit(session, &mech, publ_key);
 if (rc != CKR_OK) {
 showError(" C_EncryptInit #1", rc);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 rc = funcs->C_Encrypt(session, data1, len1, cipher, &cipherlen);
 if (rc != CKR_OK) {
 showError(" C_Encrypt #1", rc);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 /* now, decrypt the data */
 printf("Deciphering data... \n");
 rc = funcs->C_DecryptInit(session, &mech, priv_key);
 if (rc != CKR_OK) {
 showError(" C_DecryptInit #1", rc);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 rc = funcs->C_Decrypt(session, cipher, cipherlen, data2, &len2);
 if (rc != CKR_OK) {
 showError(" C_Decrypt #1", rc);
 funcs->C_CloseSession(session);

96 z/OS: z/OS ICSF Writing PKCS #11 Applications

 return !CKR_OK;
 }

 /* PKCS - returns clear data as is */
 if (len1 != len2) {
 printf(" ERROR: lengths do not match\n");
 printf(" Length of original data = %d, after decryption = %d\n",len1, len2);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 for (i=0; i <len1; i++) {
 if (data1[i] != data2[i]) {
 printf(" ERROR: mismatch at byte %d\n", i);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }
 }

 printf("Destroying keys... \n");
 rc = funcs->C_DestroyObject(session, priv_key);
 if (rc != CKR_OK) {
 showError(" C_DestroyObject #1", rc);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 rc = funcs->C_DestroyObject(session, publ_key);
 if (rc != CKR_OK) {
 showError(" C_DestroyObject #2", rc);
 funcs->C_CloseSession(session);
 return !CKR_OK;
 }

 printf("Closing the session... \n");
 rc = funcs->C_CloseSession(session);
 if (rc != CKR_OK) {
 showError(" C_CloseSession #1", rc);
 return !CKR_OK;
 }

 return CKR_OK;
}

CK_RV getFunctionList(void)
{
 CK_RV rc;
 CK_RV (*pFunc)();
 void *d;
#ifdef _LP64
 char e[]="CSNPCA64";
#elif __XPLINK__ /* @P1C */
 char e[]="CSNPCA3X"; /* @D2A */
#else
 char e[]="CSNPCAPI";
#endif

 printf("Getting the PKCS11 function list...\n");

 d = dlopen(e,RTLD_NOW);
 if (d == NULL) {
 printf("%s not found in linklist or LIBPATH\n",e); // @D1A
 return !CKR_OK;
 }

 pFunc = (CK_RV (*)())dlsym(d,"C_GetFunctionList");
 if (pFunc == NULL) {
 printf("C_GetFunctionList() not found in module %s\n",e); // @D1A
 return !CKR_OK;
 }
 rc = pFunc(&funcs);

 if (rc != CKR_OK) {
 showError(" C_GetFunctionList", rc);
 return !CKR_OK;
 }

 return CKR_OK;

Appendix B. Source code for the testpkcs11 sample program 97

}

void displaySyntax(char *pgm) {
 printf("usage: %s { -t <token-name> | -h }\n\n", pgm);
 printf(" -t <token-name> = The name of a temporary token to create for the test. The\n");
 printf(" name must be less than 33 characters in length and contains only alphanumeric\n");
 printf(" characters, nationals (@#$), and periods. The first character cannot be a\n");
 printf(" numeric or a period. The token will be deleted when the test is complete.\n\n");
 printf(" -h = Displays this help.\n\n");
}

void main(int argc, char **argv)
{
 CK_C_INITIALIZE_ARGS cinit_args;
 CK_RV rc, i;

 memset(tokenName, ' ', sizeof(tokenName)); /* Token name is left justified, padded with blanks */

 if (argc == 3) {
 if (strcmp(argv[1], "-t") == 0)
 if (strlen(argv[2]) > 0 && strlen(argv[2]) < 33) {
 memcpy(tokenName, argv[2], strlen(argv[2]));
 }
 else {
 displaySyntax(argv[0]);
 return;
 }
 else {
 displaySyntax(argv[0]);
 return;
 }
 }
 else {
 displaySyntax(argv[0]);
 return;
 }

 rc = getFunctionList();
 if (rc != CKR_OK) {
 printf("getFunctionList failed!\n"); // @D1C
 return;
 }

 memset(&cinit_args, 0x0, sizeof(cinit_args));
 cinit_args.flags = CKF_OS_LOCKING_OK;

 printf("Initializing the PKCS11 environment...\n");
 rc = funcs->C_Initialize(&cinit_args);
 if (rc != CKR_OK) {
 showError(" C_Initialize", rc);
 return;
 }

 rc = createToken();
 if (rc != CKR_OK) {
 funcs->C_Finalize(NULL);
 return;
 }

 rc = encryptRSA();
 if (rc != CKR_OK) {
 deleteToken();
 funcs->C_Finalize(NULL);
 return;
 }

 rc = deleteToken();
 if (rc != CKR_OK) {
 funcs->C_Finalize(NULL);
 return;
 }

 rc = funcs->C_Finalize(NULL);
 if (rc != CKR_OK) {
 showError(" C_Initialize", rc);
 return;
 }
 printf("Test completed successfully!\n");

98 z/OS: z/OS ICSF Writing PKCS #11 Applications

}

Appendix B. Source code for the testpkcs11 sample program 99

100 z/OS: z/OS ICSF Writing PKCS #11 Applications

Appendix C. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited vision
use software products successfully. The accessibility features in z/OS can help users do the following
tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)

© Copyright IBM Corp. 2007, 2021 101

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one syntax
element with a dotted decimal number, the ? symbol is displayed on the same line as the syntax
element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However, if
you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times. A
dotted decimal number followed by the * symbol indicates that this syntax element can be used zero
or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1* data
area, you know that you can include one data area, more than one data area, or no data area. If you
hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

102 z/OS: z/OS ICSF Writing PKCS #11 Applications

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix C. Accessibility 103

104 z/OS: z/OS ICSF Writing PKCS #11 Applications

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2007, 2021 105

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

106 z/OS: z/OS ICSF Writing PKCS #11 Applications

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details in
the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS™, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease if
a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those

Notices 107

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

108 z/OS: z/OS ICSF Writing PKCS #11 Applications

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines terms and abbreviations used in Integrated Cryptographic Service Facility (ICSF).

This glossary includes terms and definitions from:

• The American National Standard Dictionary for Information Technology, ANSI INCITS 172, by the
American National Standards Institute (ANSI). Copies can be purchased from the American National
Standards Institute, 11 West 42nd Street, New York, New York 10036. Definitions are identified by the
symbol (A) after the definition.

• The Information Technology Vocabulary, developed by Subcommittee 1, Joint Technical Committee 1,
of the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft international standards, committee drafts, and working
papers being developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition,
indicating that final agreement has not yet been reached among the participating National Bodies of
SC1.

Definitions specific to the Integrated Cryptographic Services Facility are labeled “In ICSF.”

access method services (AMS)
The facility used to define and reproduce VSAM key-sequenced data sets (KSDS).

Advanced Encryption Standard (AES)
In computer security, the National Institute of Standards and Technology (NIST) Advanced Encryption
Standard (AES) algorithm.

AES
Advanced Encryption Standard.

American National Standard Code for Information Interchange (ASCII)
The standard code using a coded character set consisting of 7-bit characters (8 bits including parity
check) that is used for information exchange among data processing systems, data communication
systems, and associated equipment. The ASCII set consists of control characters and graphic
characters.

ANSI X9.19
An ANSI standard that specifies an optional double-MAC procedure which requires a double-length
MAC key.

application program
A program written for or by a user that applies to the user's work, such as a program that does
inventory control or payroll.
A program used to connect and communicate with stations in a network, enabling users to perform
application-oriented activities.

application program interface (API)
A functional interface supplied by the operating system or by a separately orderable licensed program
that allows an application program written in a high-level language to use specific data or functions of
the operating system or the licensed program.
In ICSF, a callable service.

asymmetric cryptography
Synonym for public key cryptography.

authentication pattern
An 8-byte pattern that ICSF calculates from the master key when initializing the cryptographic key
data set. ICSF places the value of the authentication pattern in the header record of the cryptographic
key data set.

authorized program facility (APF)
A facility that permits identification of programs authorized to use restricted functions.

© Copyright IBM Corp. 2007, 2021 109

callable service
A predefined sequence of instructions invoked from an application program, using a CALL instruction.
In ICSF, callable services perform cryptographic functions and utilities.

CBC
Cipher block chaining.

CCA
Common Cryptographic Architecture.

CCF
Cryptographic Coprocessor Feature.

CDMF
Commercial Data Masking Facility.

CEDA
A CICS transaction that defines resources online. Using CEDA, you can update both the CICS system
definition data set (CSD) and the running CICS system.

Central Credit Committee
The official English name for Zentraler Kreditausschuss, also known as ZKA. ZKA was founded in 1932
and was renamed in August 2011 to Die Deutsche Kreditwirtschaft, also known as DK. DK is an
association of the German banking industry. The hybrid term in English for DK is 'German Banking
Industry Committee'.

CEX2A
Crypto Express2 Accelerator

CEX2C
Crypto Express2 Coprocessor

CEX3A
Crypto Express3 Accelerator

CEX3C
Crypto Express3 Coprocessor

CEX4A
Crypto Express4 Accelerator

CEX4C
Crypto Express4 CCA Coprocessor

CEX4P
Crypto Express4 PKCS #11 Coprocessor

CEX5A
Crypto Express5 Accelerator

CEX5C
Crypto Express5 CCA Coprocessor

CEX5P
Crypto Express5 PKCS #11 Coprocessor

CEX6A
Crypto Express6 Accelerator

CEX6C
Crypto Express6 CCA Coprocessor

CEX6P
Crypto Express6 PKCS #11 Coprocessor

CEX7A
Crypto Express7 Accelerator

CEX7C
Crypto Express7 CCA Coprocessor

110 z/OS: z/OS ICSF Writing PKCS #11 Applications

CEX7P
Crypto Express7 PKCS #11 Coprocessor

checksum
The sum of a group of data associated with the group and used for checking purposes. (T)
In ICSF, the data used is a key part. The resulting checksum is a two-digit value you enter when you
enter a master key part.

Chinese Remainder Theorem (CRT)
A mathematical theorem that defines a format for the RSA private key that improves performance.

CICS
Customer Information Control System.

cipher block chaining (CBC)
A mode of encryption that uses the data encryption algorithm and requires an initial chaining vector.
For encipher, it exclusively ORs the initial block of data with the initial control vector and then
enciphers it. This process results in the encryption both of the input block and of the initial control
vector that it uses on the next input block as the process repeats. A comparable chaining process
works for decipher.

ciphertext
In computer security, text produced by encryption.
Synonym for enciphered data.

CKDS
Cryptographic Key Data Set.

clear key
Any type of encryption key not protected by encryption under another key.

CMOS
Complementary metal oxide semiconductor.

coexistence mode
An ICSF method of operation during which CUSP or PCF can run independently and simultaneously on
the same ICSF system. A CUSP or PCF application program can run on ICSF in this mode if the
application program has been reassembled.

Commercial Data Masking Facility (CDMF)
A data-masking algorithm using a DES-based kernel and a key that is shortened to an effective key
length of 40 DES key-bits. Because CDMF is not as strong as DES, it is called a masking algorithm
rather than an encryption algorithm. Implementations of CDMF, when used for data confidentiality,
are generally exportable from the USA and Canada.

Common Cryptographic Architecture: Cryptographic Application Programming Interface
Defines a set of cryptographic functions, external interfaces, and a set of key management rules that
provide a consistent, end-to-end cryptographic architecture across different IBM platforms.

compatibility mode
An ICSF method of operation during which a CUSP or PCF application program can run on ICSF
without recompiling it. In this mode, ICSF cannot run simultaneously with CUSP or PCF.

complementary keys
A pair of keys that have the same clear key value, are different but complementary types, and usually
exist on different systems.

console
A part of a computer used for communication between the operator or maintenance engineer and the
computer. (A)

control-area split
In systems with VSAM, the movement of the contents of some of the control intervals in a control area
to a newly created control area in order to facilitate insertion or lengthening of a data record when
there are no remaining free control intervals in the original control area.

Glossary 111

control block
A storage area used by a computer program to hold control information. (I) Synonymous with control
area.
The circuitry that performs the control functions such as decoding microinstructions and generating
the internal control signals that perform the operations requested. (A)

control interval
A fixed-length area of direct-access storage in which VSAM stores records and creates distributed free
space. Also, in a key-sequenced data set or file, the set of records pointed to by an entry in the
sequence-set index record. The control interval is the unit of information that VSAM transmits to or
from direct access storage. A control interval always comprises an integral number of physical
records.

control interval split
In systems with VSAM, the movement of some of the stored records in a control interval to a free
control interval to facilitate insertion or lengthening of a record that does not fit in the original control
interval.

control statement input data set
A key generator utility program data set containing control statements that a particular key generator
utility program job will process.

control statement output data set
A key generator utility program data set containing control statements to create the complements of
keys created by the key generator utility program.

control vector
In ICSF, a mask that is exclusive ORed with a master key or a transport key before ICSF uses that key
to encrypt another key. Control vectors ensure that keys used on the system and keys distributed to
other systems are used for only the cryptographic functions for which they were intended.

CPACF
CP Assist for Cryptographic Functions

CP Assist for Cryptographic Functions
Implemented on all IBM servers to provide AES and DES encryption and SHA-1 secure hashing.

cross memory mode
Synchronous communication between programs in different address spaces that permits a program
residing in one address space to access the same or other address spaces. This synchronous transfer
of control is accomplished by a calling linkage and a return linkage.

CRT
Chinese Remainder Theorem.

Crypto Express2 Coprocessor
An asynchronous cryptographic coprocessor available on the z9 EC, z9 BC, z10 EC and z10 BC.

Crypto Express3 Coprocessor
An asynchronous cryptographic coprocessor available on z10 EC, z10 BC, z114, z196, zEC12, and
zBC12.

Crypto Express4 Coprocessor
An asynchronous cryptographic coprocessor available on zEC12 and zBC12.

Crypto Express5 Coprocessor
An asynchronous cryptographic coprocessor available on z13 and z13s.

Crypto Express6 Coprocessor
An asynchronous cryptographic coprocessor available on z14 and z14 ZR1.

Crypto Express7 Coprocessor
An asynchronous cryptographic coprocessor available on z15.

cryptographic adapter (4764, 4765, and 4767)
An expansion board that provides a comprehensive set of cryptographic functions for the network
security processor and the workstation in the TSS family of products.

112 z/OS: z/OS ICSF Writing PKCS #11 Applications

cryptographic coprocessor
A tamper responding, programmable, cryptographic PCI card, containing CPU, encryption hardware,
RAM, persistent memory, hardware random number generator, time of day clock, infrastructure
firmware, and software.

cryptographic key data set (CKDS)
A data set that contains the encrypting keys used by an installation.
In ICSF, a VSAM data set that contains all the cryptographic keys. Besides the encrypted key value, an
entry in the cryptographic key data set contains information about the key.

cryptography
The transformation of data to conceal its meaning.
In computer security, the principles, means, and methods for encrypting plaintext and decrypting
ciphertext.
In ICSF, the use of cryptography is extended to include the generation and verification of MACs, the
generation of MDCs and other one-way hashes, the generation and verification of PINs, and the
generation and verification of digital signatures.

CUSP (Cryptographic Unit Support Program)
The IBM cryptographic offering, program product 5740-XY6, using the channel-attached 3848. CUSP
is no longer in service.

CUSP/PCF conversion program
A program, for use during migration from CUSP or PCF to ICSF, that converts a CUSP or PCF
cryptographic key data set into a ICSF cryptographic key data set.

Customer Information Control System (CICS)
An IBM licensed program that enables transactions entered at remote terminals to be processed
concurrently by user written application programs. It includes facilities for building, using, and
maintaining databases.

CVC
Card verification code used by MasterCard.

CVV
Card verification value used by VISA.

data encryption algorithm (DEA)
In computer security, a 64-bit block cipher that uses a 64-bit key, of which 56 bits are used to control
the cryptographic process and 8 bits are used for parity checking to ensure that the key is transmitted
properly.

data encryption standard (DES)
In computer security, the National Institute of Standards and Technology (NIST) Data Encryption
Standard, adopted by the U.S. government as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware implementations of the data encryption algorithm.

data key or data-encrypting key
A key used to encipher, decipher, or authenticate data.
In ICSF, a 64-bit encryption key used to protect data privacy using the DES algorithm. AES data keys
are now supported by ICSF.

data set
The major unit of data storage and retrieval, consisting of a collection of data in one of several
prescribed arrangements and described by control information to which the system has access.

data-translation key
A 64-bit key that protects data transmitted through intermediate systems when the originator and
receiver do not share the same key.

DEA
Data encryption algorithm.

decipher
To convert enciphered data in order to restore the original data. (T)

Glossary 113

In computer security, to convert ciphertext into plaintext by means of a cipher system.
To convert enciphered data into clear data. Contrast with encipher. Synonymous with decrypt.

decode
To convert data by reversing the effect of some previous encoding. (I) (A)
In ICSF, to decipher data by use of a clear key.

decrypt
See decipher.

DES
Data Encryption Standard.

diagnostics data set
A key generator utility program data set containing a copy of each input control statement followed by
a diagnostic message generated for each control statement.

digital signature
In public key cryptography, information created by using a private key and verified by using a public
key. A digital signature provides data integrity and source nonrepudiation.

Digital Signature Algorithm (DSA)
A public key algorithm for digital signature generation and verification used with the Digital Signature
Standard.

Digital Signature Standard (DSS)
A standard describing the use of algorithms for digital signature purposes. One of the algorithms
specified is DSA (Digital Signature Algorithm).

Dilithium
A quantum-safe cryptographic algorithm. Also known as LI2.

DK
Die Deutsche Kreditwirtschaft (German Banking Industry Committee). Formerly known as ZKA.

domain
That part of a network in which the data processing resources are under common control. (T)
In ICSF, an index into a set of master key registers.

DSA
Digital Signature Algorithm.

DSS
Digital Signature Standard.

ECB
Electronic codebook.

ECC
Elliptic Curve Cryptography.

ECI
Eurocheque International S.C., a financial institution consortium that has defined three PIN block
formats.

EID
Environment Identification.

electronic codebook (ECB) operation
A mode of operation used with block cipher cryptographic algorithms in which plaintext or ciphertext
is placed in the input to the algorithm and the result is contained in the output of the algorithm.
A mode of encryption using the data encryption algorithm, in which each block of data is enciphered
or deciphered without an initial chaining vector. It is used for key management functions and the
encode and decode callable services.

electronic funds transfer system (EFTS)
A computerized payment and withdrawal system used to transfer funds from one account to another
and to obtain related financial data.

114 z/OS: z/OS ICSF Writing PKCS #11 Applications

encipher
To scramble data or to convert data to a secret code that masks the meaning of the data to any
unauthorized recipient. Synonymous with encrypt.
Contrast with decipher.

enciphered data
Data whose meaning is concealed from unauthorized users or observers.

encode
To convert data by the use of a code in such a manner that reconversion to the original form is
possible. (T)
In computer security, to convert plaintext into an unintelligible form by means of a code system.
In ICSF, to encipher data by use of a clear key.

encrypt
See encipher.

exit
To execute an instruction within a portion of a computer program in order to terminate the execution
of that portion. Such portions of computer programs include loops, subroutines, modules, and so on.
(T)
In ICSF, a user-written routine that receives control from the system during a certain point in
processing—for example, after an operator issues the START command.

exportable form
A condition a key is in when enciphered under an exporter key-encrypting key. In this form, a key can
be sent outside the system to another system. A key in exportable form cannot be used in a
cryptographic function.

exporter key-encrypting key
A 128-bit key used to protect keys sent to another system. A type of transport key.

file
A named set of records stored or processed as a unit. (T)

GBP
German Bank Pool.

German Bank Pool (GBP)
A German financial institution consortium that defines specific methods of PIN calculation.

German Banking Industry Committee
A hybrid term in English for Die Deutsche Kreditwirtschaft, also known as DK, an association of the
German banking industry. Prior to August 2011, DK was named ZKA for Zentraler Kreditausschuss, or
Central Credit Committee. ZKA was founded in 1932.

hashing
An operation that uses a one-way (irreversible) function on data, usually to reduce the length of the
data and to provide a verifiable authentication value (checksum) for the hashed data.

header record
A record containing common, constant, or identifying information for a group of records that follows.

ICSF
Integrated Cryptographic Service Facility.

importable form
A condition a key is in when it is enciphered under an importer key-encrypting key. A key is received
from another system in this form. A key in importable form cannot be used in a cryptographic function.

importer key-encrypting key
A 128-bit key used to protect keys received from another system. A type of transport key.

initial chaining vector (ICV)
A 64-bit random or pseudo-random value used in the cipher block chaining mode of encryption with
the data encryption algorithm.

Glossary 115

initial program load (IPL)
The initialization procedure that causes an operating system to commence operation.
The process by which a configuration image is loaded into storage at the beginning of a work day or
after a system malfunction.
The process of loading system programs and preparing a system to run jobs.

input PIN-encrypting key
A 128-bit key used to protect a PIN block sent to another system or to translate a PIN block from one
format to another.

installation exit
See exit.

Integrated Cryptographic Service Facility (ICSF)
A licensed program that runs under MVS/System Product 3.1.3, or higher, or OS/390 Release 1, or
higher, or z/OS, and provides access to the hardware cryptographic feature for programming
applications. The combination of the hardware cryptographic feature and ICSF provides secure high-
speed cryptographic services.

International Organization for Standardization
An organization of national standards bodies from many countries, established to promote the
development of standards to facilitate the international exchange of goods and services and to
develop cooperation in intellectual, scientific, technological, and economic activity. ISO has defined
certain standards relating to cryptography and has defined two PIN block formats.

ISO
International Organization for Standardization.

job control language (JCL)
A control language used to identify a job to an operating system and to describe the job's
requirements.

key-encrypting key (KEK)
In computer security, a key used for encryption and decryption of other keys.
In ICSF, a master key or transport key.

key generator utility program (KGUP)
A program that processes control statements for generating and maintaining keys in the cryptographic
key data set.

key output data set
A key generator utility program data set containing information about each key that the key generator
utility program generates except an importer key for file encryption.

key part
A 32-digit hexadecimal value that you enter for ICSF to combine with other values to create a master
key or clear key.

key part register
A register in a cryptographic coprocessor that accumulates key parts as they are entered via TKE.

key store policy
Ensures that only authorized users and jobs can access secure key tokens that are stored in one of the
ICSF key stores - the CKDS or the PKDS.

key store policy controls
Resources that are defined in the XFACILIT class. A control can verify the caller has authority to use a
secure token and identify the action to take when the secure token is not stored in the CKDS or PKDS.

LI2
Abbreviation for the Dilithium quantum-safe algorithm.

linkage
The coding that passes control and parameters between two routines.

116 z/OS: z/OS ICSF Writing PKCS #11 Applications

load module
All or part of a computer program in a form suitable for loading into main storage for execution. A load
module is usually the output of a linkage editor. (T)

LPAR mode
The central processor mode that enables the operator to allocate the hardware resources among
several logical partitions.

MAC generation key
A 64-bit or 128-bit key used by a message originator to generate a message authentication code sent
with the message to the message receiver.

MAC verification key
A 64-bit or 128-bit key used by a message receiver to verify a message authentication code received
with a message.

magnetic tape
A tape with a magnetizable layer on which data can be stored. (T)

master key
In computer security, the top-level key in a hierarchy of key-encrypting keys.
ICSF uses master keys to encrypt operational keys. Master keys are known only to the cryptographic
coprocessors and are maintained in tamper proof cryptographic coprocessors.

master key concept
The idea of using a single cryptographic key, the master key, to encrypt all other keys on the system.

master key register
A register in the cryptographic coprocessors that stores the master key that is active on the system.

master key variant
A key derived from the master key by use of a control vector. It is used to force separation by type of
keys on the system.

MD5
Message Digest 5. A hash algorithm.

message authentication code (MAC)
The cryptographic result of block cipher operations on text or data using the cipher block chain (CBC)
mode of operation.
In ICSF, a MAC is used to authenticate the source of the message, and verify that the message was not
altered during transmission or storage.

modification detection code (MDC)
A 128-bit value that interrelates all bits of a data stream so that the modification of any bit in the data
stream results in a new MDC.
In ICSF, an MDC is used to verify that a message or stored data has not been altered.

multiple encipherment
The method of encrypting a key under a double-length key-encrypting key.

new master key register
A register in a cryptographic coprocessor that stores a master key before you make it active on the
system.

NIST
U.S. National Institute of Science and Technology.

NOCV processing
Process by which the key generator utility program or an application program encrypts a key under a
transport key itself rather than a transport key variant.

noncompatibility mode
An ICSF method of operation during which CUSP or PCF can run independently and simultaneously on
the same z/OS, OS/390, or MVS system. You cannot run a CUSP or PCF application program on ICSF in
this mode.

Glossary 117

nonrepudiation
A method of ensuring that a message was sent by the appropriate individual.

OAEP
Optimal asymmetric encryption padding.

offset
The process of exclusively ORing a counter to a key.

old master key register
A register in a cryptographic coprocessor that stores a master key that you replaced with a new
master key.

operational form
The condition of a key when it is encrypted under the master key so that it is active on the system.

output PIN-encrypting key
A 128-bit key used to protect a PIN block received from another system or to translate a PIN block
from one format to another.

PAN
Personal Account Number.

parameter
Data passed between programs or procedures.

parmlib
A system parameter library, either SYS1.PARMLIB or an installation-supplied library.

partitioned data set (PDS)
A data set in direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data.

Personal Account Number (PAN)
A Personal Account Number identifies an individual and relates that individual to an account at a
financial institution. It consists of an issuer identification number, customer account number, and one
check digit.

personal identification number (PIN)
The 4- to 12-digit number entered at an automatic teller machine to identify and validate the
requester of an automatic teller machine service. Personal identification numbers are always
enciphered at the device where they are entered, and are manipulated in a secure fashion.

Personal Security card
An ISO-standard “smart card” with a microprocessor that enables it to perform a variety of functions
such as identifying and verifying users, and determining which functions each user can perform.

PIN block
A 64-bit block of data in a certain PIN block format. A PIN block contains both a PIN and other data.

PIN generation key
A 128-bit key used to generate PINs or PIN offsets algorithmically.

PIN key
A 128-bit key used in cryptographic functions to generate, transform, and verify the personal
identification numbers.

PIN offset
For 3624, the difference between a customer-selected PIN and an institution-assigned PIN. For
German Bank Pool, the difference between an institution PIN (generated with an institution PIN key)
and a pool PIN (generated with a pool PIN key).

PIN verification key
A 128-bit key used to verify PINs algorithmically.

PKA
Public Key Algorithm.

PKCS
Public Key Cryptographic Standards (RSA Data Security, Inc.)

118 z/OS: z/OS ICSF Writing PKCS #11 Applications

PKDS
Public key data set (PKA cryptographic key data set).

plaintext
Data in normal, readable form.

primary space allocation
An area of direct access storage space initially allocated to a particular data set or file when the data
set or file is defined. See also secondary space allocation.

private key
In computer security, a key that is known only to the owner and used with a public key algorithm to
decrypt data or generate digital signatures. The data is encrypted and the digital signature is verified
using the related public key.

processor complex
A configuration that consists of all the machines required for operation.

Processor Resource/Systems Manager
Enables logical partitioning of the processor complex, may provide additional byte-multiplexer
channel capability, and supports the VM/XA System Product enhancement for Multiple Preferred
Guests.

Programmed Cryptographic Facility (PCF)
An IBM licensed program that provides facilities for enciphering and deciphering data and for
creating, maintaining, and managing cryptographic keys.
The IBM cryptographic offering, program product 5740-XY5, using software only for encryption and
decryption. This product is no longer in service; ICSF is the replacement product.

PR/SM
Processor Resource/Systems Manager.

public key
In computer security, a key made available to anyone who wants to encrypt information using the
public key algorithm or verify a digital signature generated with the related private key. The encrypted
data can be decrypted only by use of the related private key.

public key algorithm (PKA)
In computer security, an asymmetric cryptographic process in which a public key is used for
encryption and digital signature verification and a private key is used for decryption and digital
signature generation.

public key cryptography
In computer security, cryptography in which a public key is used for encryption and a private key is
used for decryption. Synonymous with asymmetric cryptography.

QSA
Quantum-safe algorithm. Examples include CRYSTALS-Dilithium Digital Signature Algorithm.

RACE Integrity Primitives Evaluatiuon Message Digest
A hash algorithm.

RCE redirection
Ability for an existing CCA service to be used in such a way that a request is reformatted and routed to
a Regional Cryptographic Server for processing. The RCE redirection function is available when the
system has only an RCE device active or the user has READ access to CSF.RCE.FUNCTION.REDIRECT
in the XFACILIT SAF resource class.

RCS
Regional Cryptographic Server.

RDO
Resource definition online.

record chaining
When there are multiple cipher requests and the output chaining vector (OCV) from the previous
encipher request is used as the input chaining vector (ICV) for the next encipher request.

Glossary 119

Resource Access Control Facility (RACF)
An IBM licensed program that provides for access control by identifying and verifying the users to the
system, authorizing access to protected resources, logging the detected unauthorized attempts to
enter the system, and logging the detected accesses to protected resources.

retained key
A private key that is generated and retained within the secure boundary of the Crypto Express adapter.

return code
A code used to influence the execution of succeeding instructions. (A)
A value returned to a program to indicate the results of an operation requested by that program.

Rivest-Shamir-Adleman (RSA) algorithm
A process for public key cryptography that was developed by R. Rivest, A. Shamir, and L. Adleman.

RMF
Resource Manager Interface.

RMI
Resource Measurement Facility.

RSA
Rivest-Shamir-Adleman.

RSA-PSS
RSA-Probabilistic Signature Scheme. RSA-PSS is a signature scheme that is based on the RSA
cryptosystem and provides increased security assurance. It was added in version 2.1 of PKCS #1.

SAF
System Authorization Facility.

save area
Area of main storage in which contents of registers are saved. (A)

secondary space allocation
In systems with VSAM, area of direct access storage space allocated after primary space originally
allocated is exhausted. See also primary space allocation.

Secure Electronic Transaction
A standard created by Visa International and MasterCard for safe-guarding payment card purchases
made over open networks.

secure key
A key that is encrypted under a master key. When ICSF uses a secure key, it is passed to a
cryptographic coprocessor where the coprocessor decrypts the key and performs the function. The
secure key never appears in the clear outside of the cryptographic coprocessor.

Secure Sockets Layer
A security protocol that provides communications privacy over the Internet by allowing client/server
applications to communicate in a way that is designed to prevent eavesdropping, tampering, or
message forgery.

sequential data set
A data set whose records are organized on the basis of their successive physical positions, such as on
magnetic tape.

SET
Secure Electronic Transaction.

SHA (Secure Hash Algorithm, FIPS 180)
(Secure Hash Algorithm, FIPS 180) The SHA (Secure Hash Algorithm) family is a set of related
cryptographic hash functions designed by the National Security Agency (NSA) and published by the
National Institute of Standards and Technology (NIST). The first member of the family, published in
1993, is officially called SHA. However, today, it is often unofficially called SHA-0 to avoid confusion
with its successors. Two years later, SHA-1, the first successor to SHA, was published. Four more
variants, have since been published with increased output ranges and a slightly different design:
SHA-224, SHA-256, SHA-384, and SHA-512 (all are sometimes referred to as SHA-2).

120 z/OS: z/OS ICSF Writing PKCS #11 Applications

SHA-1 (Secure Hash Algorithm 1, FIPS 180)
A hash algorithm required for use with the Digital Signature Standard.

SHA-2 (Secure Hash Algorithm 2, FIPS 180)
Four additional variants to the SHA family, with increased output ranges and a slightly different
design: SHA-224, SHA-256, SHA-384, and SHA-512 (all are sometimes referred to as SHA-2).

SHA-3 (Secure Hash Algorithm 3, FIPS 202)
SHA-3 is a subset of the cryptographic primitive family Keccak and is used to build instances of
Permutation-Based Hash and Extendable-Output Functions (see also SHAKE). Because of the
successful attacks on MD5, SHA-0, and SHA-1, NIST perceived a need for an alternative, dissimilar
cryptographic hash, which became SHA-3.

SHA-224
One of the SHA-2 algorithms.

SHA-256
One of the SHA-2 algorithms.

SHA-384
One of the SHA-2 algorithms.

SHA-512
One of the SHA-2 algorithms.

SHA3-224
An instance of the SHA-3 algorithm that provides a Permutation-Based Hash.

SHA3-256
An instance of the SHA-3 algorithm that provides a Permutation-Based Hash.

SHA3-384
An instance of the SHA-3 algorithm that provides a Permutation-Based Hash.

SHA3-512
An instance of the SHA-3 algorithm that provides a Permutation-Based Hash.

SHAKE (combination of Secure Hash Algorithm and Keccak)
A set of Extendable-Output Functions defined in FIPS PUB 202.

SHAKE128
An instance of the SHA-3 algorithm that provides an Extendable-Output Function.

SHAKE256
An instance of the SHA-3 algorithm that provides an Extendable-Output Function.

smart card
A plastic card that has a microchip capable of storing data or process information.

special secure mode
An alternative form of security that allows you to enter clear keys with the key generator utility
program or generate clear PINs.

SSL
Secure Sockets Layer.

supervisor state
A state during which a processing unit can execute input/output and other privileged instructions.

System Authorization Facility (SAF)
An interface to a system security system like the Resource Access Control Facility (RACF).

system key
A key that ICSF creates and uses for internal processing.

System Management Facility (SMF)
A base component of z/OS that provides the means for gathering and recording information that can
be used to evaluate system usage.

TDEA
Triple Data Encryption Algorithm.

Glossary 121

TKE
Trusted key entry.

Transaction Security System
An IBM product offering including both hardware and supporting software that provides access
control and basic cryptographic key-management functions in a network environment. In the
workstation environment, this includes the 4755 Cryptographic Adapter, the Personal Security Card,
the 4754 Security Interface Unit, the Signature Verification feature, the Workstation Security Services
Program, and the AIX Security Services Program/6000. In the host environment, this includes the
4753 Network Security Processor and the 4753 Network Security Processor MVS Support Program.

transport key
A key used to protect keys distributed from one system to another. A transport key can be an AES or
DES key-encrypting key (importer or exporter).

transport key variant
A key derived from a transport key by use of a control vector. It is used to force separation by type for
keys sent between systems.

TRUE
Task-related User Exit (CICS). The CICS-ICSF Attachment Facility provides a CSFATRUE and
CSFATREN routine.

UAT
UDX Authority Table.

UDF
User-defined function.

UDK
User-derived key.

UDP
User Developed Program.

UDX
User Defined Extension.

verification pattern
An 8-byte pattern that ICSF calculates from the key parts you enter when you enter a master key or
clear key. You can use the verification pattern to verify that you have entered the key parts correctly
and specified a certain type of key.

Virtual Storage Access Method (VSAM)
An access method for indexed or sequential processing of fixed and variable-length records on direct-
access devices. The records in a VSAM data set or file can be organized in logical sequence by means
of a key field (key sequence), in the physical sequence in which they are written on the data set or file
(entry-sequence), or by means of relative-record number.

Virtual Telecommunications Access Method (VTAM)
An IBM licensed program that controls communication and the flow of data in an SNA network. It
provides single-domain, multiple-domain, and interconnected network capability.

VISA
A financial institution consortium that has defined four PIN block formats and a method for PIN
verification.

VISA PIN Verification Value (VISA PVV)
An input to the VISA PIN verification process that, in practice, works similarly to a PIN offset.

3621
A model of an IBM Automatic Teller Machine that has a defined PIN block format.

3624
A model of an IBM Automatic Teller Machine that has a defined PIN block format and methods of PIN
calculation.

122 z/OS: z/OS ICSF Writing PKCS #11 Applications

4764
The IBM 4764 PCI-X Cryptographic Coprocessor processor provides a secure programming and
hardware environment where AES, DES, and RSA processes are performed.

4765
The IBM 4765 PCIe Cryptographic Coprocessor processor provides a secure programming and
hardware environment where AES, DES, ECC, and RSA processes are performed.

4767
The IBM 4767 PCIe Cryptographic Coprocessor processor provides a secure programming and
hardware environment where AES, DES, ECC, and RSA processes are performed.

Glossary 123

124 z/OS: z/OS ICSF Writing PKCS #11 Applications

Index

A
accessibility

contact IBM 101
features 101

additional manifest constants
Dilithium quantum-safe algorithms 30
regional cryptographic servers 84

API examples
regional cryptographic servers 84

assistive technologies 101
auditing PKCS #11 functions 9

C
C application program interface (API), using 19
CCA (Common Cryptographic Architecture) 1
CK_RV CSN_FindALLObjects() function 62
CKK_IBM_SM4

key type 77
CKM_IBM_ISO2_SM4_MAC 82
CKM_IBM_SM2 79
CKM_IBM_SM2_ENCRYPT 79
CKM_IBM_SM2_KEY_PAIR_GEN 80
CKM_IBM_SM2_SM3 80
CKM_IBM_SM3 81
CKM_IBM_SM4_CBC 81
CKM_IBM_SM4_ECB 81
CKM_IBM_SM4_KEY_GEN 83
CKM_IBM_SM4_MAC 83
CKM_IBM_SM4_MAC_GENERAL 84
Common Cryptographic Architecture (CCA) 1
component trace entries for TKDS events 10
constants, manifest

where defined 19
contact

z/OS 101
crypto education x
Cryptoki 1
CRYPTOZ class 3
CSFSERV class

resources for token services 4

D
data object

attributes that ICSF supports 31
deleting token 19
Diffie-Hellman domain parameter object

attributes that ICSF supports 31
Diffie-Hellman private key object

attributes that ICSF supports 31
Diffie-Hellman public key object

attributes that ICSF supports 31
Dilithium quantum-safe algorithms

additional manifest constants 30
DLLs provided by ICSF 91

domain parameter object
attributes that ICSF supports 31

DSA domain parameter object
attributes that ICSF supports 31

DSA private key object
attributes that ICSF supports 31

DSA public key object
attributes that ICSF supports 31

dynamic link libraries (DLLs) provided by ICSF 91

E
Elliptic Curve private key object

attributes that ICSF supports 31
Elliptic Curve public key object

attributes that ICSF supports 31
environment variables for tracing 71

F
feedback xi
FIPS 140-2

algorithms restricted when complying with 30
operating in compliance with 11

function
non-standard PKCS #11 supported by ICSF 62
standard PKCS #11 supported by ICSF 51

function return code
unique to z/OS, list of 70

H
header file for C API 91

K
key type

CKK_IBM_SM4 77
key types supported 20
keyboard

navigation 101
PF keys 101
shortcut keys 101

L
Language Environment 19
library

information that can be set and queried 50

M
manifest constants

where defined 19
mechanism

information returned by C_GetMechanismInfo 21

Index 125

mechanism (continued)
which cryptographic hardware supports 26

N
navigation

keyboard 101

O
object

data
attributes that ICSF supports 31

Diffie-Hellman domain parameter
attributes that ICSF supports 31

Diffie-Hellman private key
attributes that ICSF supports 31

Diffie-Hellman public key
attributes that ICSF supports 31

domain parameter
attributes that ICSF supports 31

DSA domain parameter
attributes that ICSF supports 31

DSA private key
attributes that ICSF supports 31

DSA public key
attributes that ICSF supports 31

Elliptic Curve private key
attributes that ICSF supports 31

Elliptic Curve public key
attributes that ICSF supports 31

private key
attributes that ICSF supports 31

RSA private key
attributes that ICSF supports 31

RSA public key
attributes that ICSF supports 31

secret key
attributes that ICSF supports 31

SM2 private key
attributes that ICSF supports 31

SM2 public key
attributes that ICSF supports 31

X.509 certificate
attributes that ICSF supports 31

object type
supported by ICSF, list of 31

P
PIN 3
private key object

attributes that ICSF supports 31
program, sample

building and using 73
source code for 93

Public Key Cryptography Standards (PKCS) 1
public key object

attributes that ICSF supports 31

R
regional cryptographic servers

regional cryptographic servers (continued)
additional manifest constants 84
API examples 84
mechanism 77
XORing of a key and data 84

RSA private key object
attributes that ICSF supports 31

RSA public key object
attributes that ICSF supports 31

S
sample C program, PKCS #11

building and using 73
sample program, testpkcs11

source code for 93
secret key object

attributes that ICSF supports 31
sending to IBM

reader comments xi
session object 10
shortcut keys 101
slot

information that can be queried 50
slot ID 1
SM2 private key object

attributes that ICSF supports 31
SM2 public key object

attributes that ICSF supports 31
SM4 data encryption mechanism 82
SMF records written for PKCS #11 functions 9
SO R/W

description 3
SO role 3
SRB mode 19
Strong SO

description 3

T
tasks

running the sample program
steps 73

TCB mode 19
testpkcs11 program

building and using 73
source code for 93

TKDS (token data set)
description 2

token
access levels 3
deleting 19
information that can be set and queried 50
managing, interfaces for 7

token data set (TKDS)
description 2

token object 10
token, on z/OS

description 1
rules for name 1

trace data 71
trace entries for TKDS events 10
trademarks 108

126 z/OS: z/OS ICSF Writing PKCS #11 Applications

troubleshooting applications 71

U
updatecomp program

building and using 73
user interface

ISPF 101
TSO/E 101

User R/O
description 4

User R/W
description 4

User role 3

V
V2R2 changed information FMID HCR77C0 xv
V2R2 deleted information FMID HCR77C0 xv
V2R2 new information FMID HCR77C0 xv
V2R3 changed information FMID HCR77C1 xiv
V2R3 changed information FMID HCR77D0 xiv
V2R3 deleted information FMID HCR77C1 xiv
V2R3 deleted information FMID HCR77D0 xiv
V2R3 new information FMID HCR77C1 xiv
V2R4 changed information FMID HCR77D1 xiii
V2R4 deleted information FMID HCR77D1 xiii
V2R4 new information FMID HCR77D1 xiii

W
Weak SO

description 3
Weak User

description 4

X
X.509 certificate object

attributes that ICSF supports 31
XORing of a key and data

regional cryptographic servers 84

Z
z/OS PKCS #11 token

deleting 19
description 1
rules for name 1

Index 127

128 z/OS: z/OS ICSF Writing PKCS #11 Applications

IBM®

SC14-7510-07

	Contents
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Where to find more information
	IBM Crypto Education

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R4 (FMID HCR77D1)
	Changes made in Cryptographic Support for z/OS V2R2 - z/OS V2R3 (FMID HCR77D0)
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R3 (FMID HCR77C1)
	Changes made in Cryptographic Support for z/OS V2R1 - z/OS V2R2 (FMID HCR77C0)

	Chapter 1. Overview of z/OS support for PKCS #11
	Tokens
	Secure key PKCS #11
	The token data set (TKDS)
	Controlling token access and key policy
	Managing tokens
	Sample scenario for setting up z/OS PKCS #11 tokens
	Sample scenario for controlling clear key processing

	Auditing PKCS #11 functions
	Component trace for PKCS #11 functions
	Object types
	Session objects
	Token objects

	Operating in compliance with FIPS 140-2
	Requiring signature verification for ICSF module CSFINPV2
	Requiring FIPS 140-2 compliance from all z/OS PKCS #11 applications
	Requiring FIPS 140-2 compliance from select z/OS PKCS #11 applications
	Specifying FIPS 140-2 compliance from within a z/OS PKCS #11 application

	Preparing to use PKCS #11 applications
	Tasks for the system programmer
	Tasks for the security administrator
	Tasks for the auditor
	Tasks for application programmers

	Optional Crypto Express adapters

	Chapter 2. The C API
	Using the C API
	Deleting z/OS PKCS #11 tokens
	Environment
	Cross memory considerations

	Key types and mechanisms supported
	Additional manifest constants for Dilithium quantum-safe algorithm support
	Objects and attributes supported
	Library, slot, and token information
	Functions supported
	Standard functions supported
	Non-standard functions supported
	Non-standard mechanisms supported

	Enterprise PKCS #11 coprocessors
	Key algorithms/usages that are unsupported or disallowed by the Enterprise PKCS #11 coprocessors
	PKCS #11 Coprocessor Access Control Points
	Standard compliance modes

	Function return codes
	Troubleshooting PKCS #11 applications

	Chapter 3. Sample PKCS #11 C programs
	Running the pre-compiled version of testpkcs11
	Steps for running the pre-compiled version of testpkcs11

	Building sample PKCS #11 applications from source code

	Chapter 4. Regional cryptographic servers
	Regional cryptographic server key types and mechanisms supported
	CKM_IBM_SM2
	CKM_IBM_SM2_ENCRYPT
	CKM_IBM_SM2_KEY_PAIR_GEN
	CKM_IBM_SM2_SM3
	CKM_IBM_SM3
	CKM_IBM_SM4_CBC
	CKM_IBM_SM4_ECB
	CKM_IBM_SM4_ECB_ENCRYPT_DATA
	CKM_IBM_SM4_ISO2_MAC
	CKM_IBM_SM4_ISO2_MAC_GENERAL
	CKM_IBM_SM4_KEY_GEN
	CKM_IBM_SM4_MAC
	CKM_IBM_SM4_MAC_GENERAL
	CKM_XOR_BASE_AND_DATA

	Additional manifest constants for regional cryptographic servers
	API examples for regional cryptographic servers

	Chapter 5. ICSF PKCS #11 callable services
	Appendix A. SMP/E installation data sets, directories, and files
	Appendix B. Source code for the testpkcs11 sample program
	Appendix C. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	A
	C
	D
	E
	F
	H
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

